Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liyun Zhao is active.

Publication


Featured researches published by Liyun Zhao.


Nature Communications | 2018

Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass

Pengfei Yang; Xiaolong Zou; Zhepeng Zhang; Min Hong; Jianping Shi; Shulin Chen; Jiapei Shu; Liyun Zhao; Shaolong Jiang; Xiebo Zhou; Yahuan Huan; Chunyu Xie; Peng Gao; Qing Chen; Qing Zhang; Zhongfan Liu; Yanfeng Zhang

Monolayer transition metal dichalcogenides (TMDs) have become essential two-dimensional materials for their perspectives in engineering next-generation electronics. For related applications, the controlled growth of large-area uniform monolayer TMDs is crucial, while it remains challenging. Herein, we report the direct synthesis of 6-inch uniform monolayer molybdenum disulfide on the solid soda-lime glass, through a designed face-to-face metal-precursor supply route in a facile chemical vapor deposition process. We find that the highly uniform monolayer film, with the composite domains possessing an edge length larger than 400u2009µm, can be achieved within a quite short time of 8u2009min. This highly efficient growth is proven to be facilitated by sodium catalysts that are homogenously distributed in glass, according to our experimental facts and density functional theory calculations. This work provides insights into the batch production of highly uniform TMD films on the functional glass substrate with the advantages of low cost, easily transferrable, and compatible with direct applications.Growth of large-area monolayer transition metal dichalcogenides is critical for their application but remains challenging. Here Yang et al. report rapid chemical vapor deposition of 6-inch monolayer molybdenum disulfide by sufficiently uniformly supplying the precursors and catalysts.


Small | 2017

Tuning Excitonic Properties of Monolayer MoS2 with Microsphere Cavity by High-Throughput Chemical Vapor Deposition Method

Yang Mi; Zhepeng Zhang; Liyun Zhao; Shuai Zhang; Jie Chen; Qingqing Ji; Jianping Shi; Xiebo Zhou; Rui Wang; Jia Shi; Wenna Du; Zhiyong Wu; Xiaohui Qiu; Qing Zhang; Yanfeng Zhang; Xinfeng Liu

Tuning the optical properties of 2D direct bandgap semiconductors is crucial for applications in photonic light source, optical communication, and sensing. In this work, the excitonic properties of molybdenum disulphide (MoS2 ) are successfully tuned by directly depositing it onto silica microsphere resonators using chemical vapor deposition method. Multiple whispering gallery mode (WGM) peaks in the emission wavelength range of ≈650-750 nm are observed under continuous wave excitation at room temperature. Time-resolved photoluminescence (TRPL) and femtosecond transient absorption (TA) spectroscopy are conducted to study light-matter interaction dynamics of the MoS2 microcavities. TRPL study suggests radiative recombination rate of carrier-phonon scattering and interband transition processes in MoS2 is enhanced by a factor of ≈1.65 due to Purcell effect in microcavities. TA spectroscopy study shows modulation of the interband transition process mainly occurs at PB-A band with an estimated F ≈ 1.60. Furthermore, refractive index sensing utilizing WGM peaks of MoS2 is established with sensitivity up to ≈150 nm per refractive index unit. The present work provides a large-scale and straightforward method for coupling atomically thin 2D gain media with cavities for high-performance optoelectronic devices and sensors.


Communications Chemistry | 2018

Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil

Shaolong Jiang; Min Hong; Wei Wei; Liyun Zhao; Na Zhang; Zhepeng Zhang; Pengfei Yang; Nan Gao; Xiebo Zhou; Chunyu Xie; Jianping Shi; Yahuan Huan; Lianming Tong; Jijun Zhao; Qing Zhang; Qiang Fu; Yanfeng Zhang

Rhenium diselenide (ReSe2) has recently garnered great research interest due to its distorted 1T structure, anisotropic physical properties, and applications in polarization-sensitive photodetectors. However, ReSe2 synthesized by chemical vapor deposition (CVD) is usually a multilayer/polycrystalline material containing numerous grain boundaries, thereby hindering its further applications. Here we describe the direct CVD growth of high-quality monolayer ReSe2 single crystals with a parallelogram shape arising from its anisotropic structure on a gold foil substrate. In particular, we use low-energy electron microscopy/diffraction combined with scanning tunneling microscopy/spectroscopy to determine the atomic-scale structure, domain orientation/boundaries, and band features of monolayer ReSe2 flakes grown directly on gold foils. This work may open new opportunities for the direct synthesis and in situ characterization of CVD-grown monolayer ReSe2.Improving the synthesis of crystalline monolayer transition metal dichalcogenides requires insight into domain and boundary structures. Here, the authors produce monolayer rhenium diselenide by chemical vapour deposition onto gold foil, allowing in situ analysis of domain and defect structure.


Nanotechnology | 2018

Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils

Shaolong Jiang; Liyun Zhao; Yuping Shi; Chunyu Xie; Na Zhang; Zhepeng Zhang; Yahuan Huan; Pengfei Yang; Min Hong; Xiebo Zhou; Jianping Shi; Qing Zhang; Yanfeng Zhang

Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77-290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.


Journal of Physical Chemistry Letters | 2018

Ultrafast Charge Transfer in Perovskite Nanowire/2D Transition Metal Dichalcogenide Heterostructures

Qiyi Fang; Qiuyu Shang; Liyun Zhao; Rui Wang; Zhepeng Zhang; Pengfei Yang; Xinyu Sui; Xiaohui Qiu; Xinfeng Liu; Qing Zhang; Yanfeng Zhang

Mixed-dimensional van der Waals (vdW) heterostructures between one-dimensional (1D) perovskite nanowires and two-dimensional (2D) transition metal dichalcogenides (TMDCs) hold great potential for novel optoelectronics and light-harvesting applications. However, the ultrafast carrier dynamics between the 1D perovskite nanowires and 2D TMDCs are currently not well understood, which is critical for related optoelectronic applications. Here we demonstrate vdW heterostructures of CsPbBr3 nanowire/monolayer MoS2 and CsPbBr3 nanowire/monolayer WSe2 and further present systematic investigations on their charge transfer dynamics. We show that CsPbBr3/MoS2 and CsPbBr3/WSe2 are type-I and type-II heterostructures, respectively. Both electrons and holes transfer from CsPbBr3 to MoS2 with an efficiency of 71%. As a contrast, holes transfer from CsPbBr3 to WSe2 with a carrier transfer efficiency of 70% and electrons transfer inversely within 7 ps. The ultrafast and efficient charge transfer in the 1D/2D perovskite-TMDC heterostructures suggest great promise in light emission, photodetector, and photovoltaic devices.


Advanced Materials | 2018

Vertical 1T-TaS2 Synthesis on Nanoporous Gold for High-Performance Electrocatalytic Applications

Yahuan Huan; Jianping Shi; Xiaolong Zou; Yue Gong; Zhepeng Zhang; Minghua Li; Liyun Zhao; Runzhang Xu; Shaolong Jiang; Xiebo Zhou; Min Hong; Chunyu Xie; He Li; Xing-You Lang; Qing Zhang; Lin Gu; Xiaoqin Yan; Yanfeng Zhang

2D metallic TaS2 is acting as an ideal platform for exploring fundamental physical issues (superconductivity, charge-density wave, etc.) and for engineering novel applications in energy-related fields. The batch synthesis of high-quality TaS2 nanosheets with a specific phase is crucial for such issues. Herein, the successful synthesis of novel vertically oriented 1T-TaS2 nanosheets on nanoporous gold substrates is reported, via a facile chemical vapor deposition route. By virtue of the abundant edge sites and excellent electrical transport property, such vertical 1T-TaS2 is employed as high-efficiency electrocatalysts in the hydrogen evolution reaction, featured with rather low Tafel slopes ≈67-82 mV dec-1 and an ultrahigh exchange current density ≈67.61 µA cm-2 . The influence of phase states of 1T- and 2H-TaS2 on the catalytic activity is also discussed with the combination of density functional theory calculations. This work hereby provides fundamental insights into the controllable syntheses and electrocatalytic applications of vertical 1T-TaS2 nanosheets achieved through the substrate engineering.


Advanced Materials | 2018

Ultrathin CsPbX3 Nanowire Arrays with Strong Emission Anisotropy

Yan Gao; Liyun Zhao; Qiuyu Shang; Yangguang Zhong; Zhen Liu; Jie Chen; Zhepeng Zhang; Jia Shi; Wenna Du; Yanfeng Zhang; Shulin Chen; Peng Gao; Xinfeng Liu; Xina Wang; Qing Zhang

1D nanowires of all-inorganic lead halide perovskites represent a good architecture for the development of polarization-sensitive optoelectronic devices due to their high absorption efficient, emission yield, and dielectric constants. However, among as-fabricated perovskite nanowires with the lateral dimensions of hundreds nanometers so far, the optical anisotropy is hindered and rarely explored owing to the invalidating of electrostatic dielectric mismatch in the physical dimensions. Here, well-aligned CsPbBr3 and CsPbCl3 nanowires with thickness T down to 15 and 7 nm, respectively, are synthesized using a vapor phase van der Waals epitaxial method. Strong emission anisotropy with polarization ratio up to ≈0.78 is demonstrated in the nanowires with T < 40 nm due to the electrostatic dielectric confinement. With the increasing of thickness, the polarization ratio remarkably reduces monotonously to ≈0.17 until T ≈140 nm; and further oscillates in a small amplitude owing to the wave characteristic of light. These findings not only represent a demonstration of perovskite-based polarization-sensitive light sources, but also advance fundamental understanding of their polarization properties of perovskite nanowires.


Small | 2018

Low Threshold Fabry-Pérot Mode Lasing from Lead Iodide Trapezoidal Nanoplatelets

Yangguang Zhong; Qi Wei; Zhen Liu; Qiuyu Shang; Liyun Zhao; Ruiwen Shao; Zhepeng Zhang; Jie Chen; Wenna Du; Chao Shen; Jun Zhang; Yanfeng Zhang; Peng Gao; Guichuan Xing; Xinfeng Liu; Qing Zhang

Lead Iodide (PbI2 ) is a layered semiconductor with direct band gap holding great promises in green light emission and detection devices. Recently, PbI2 planar lasers are demonstrated using hexagonal whispering-gallery-mode microcavities, but the lasing threshold is quite high. In this work, lasing from vapor phase deposition derived PbI2 trapezoidal nanoplatelets (NPs) with threshold that is at least an order of magnitude lower than the previous value is reported. The growth mechanism of the trapezoidal NPs is explored and attributed to the synergistic effects of van der Waals interactions and lattice mismatching. The lasing is enabled by the population inversion of n = 1 excitons and the optical feedback is provided by the Fabry-Pérot oscillation between the side facets of trapezoidal NPs. The findings not only advance the understanding of growth and photophysics mechanism of PbI2 nanostructures but also provide ideas to develop low threshold ultrathin lasers.


Nano Research | 2018

Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils

Chunyu Xie; Shaolong Jiang; Xiaolong Zou; Yuanwei Sun; Liyun Zhao; Min Hong; Shulin Chen; Yahuan Huan; Jianping Shi; Xiebo Zhou; Zhepeng Zhang; Pengfei Yang; Yuping Shi; Porun Liu; Qing Zhang; Peng Gao; Yanfeng Zhang

Vertical heterostructures based on two-dimensional (2D) materials have attracted widespread interest for their numerous applications in electronic and optoelectronic devices. Herein, we report the direct construction of an abnormal graphene/ReSe2 stack on Au foils by a two-step chemical vapor deposition (CVD) strategy. During the second growth stage, monolayer ReSe2 is found to preferentially evolve at the interface between the first-grown graphene layer and the Au substrate. The unusual stacking behavior is unraveled by in-situ “cutting open” the upper graphene from the defects to expose the lower ReSe2 using scanning tunneling microscopy (STM). From combination of these results with density functional theory calculations, the domain boundaries and edge sites of graphene are proposed to be adsorption sites for Re and Se precursors, further facilitating the growth of ReSe2 at the van der Waals gap of graphene/Au. This work hereby offers an intriguing strategy for obtaining vertical 2D heterostructures featured with an ultra-clean interface and a designed stacking geometry.


Advanced Materials | 2018

Chemical Vapor Deposition Grown Wafer‐Scale 2D Tantalum Diselenide with Robust Charge‐Density‐Wave Order

Jianping Shi; Xuexian Chen; Liyun Zhao; Yue Gong; Min Hong; Yahuan Huan; Zhepeng Zhang; Pengfei Yang; Yong Li; Qinghua Zhang; Qing Zhang; Lin Gu; Huanjun Chen; Jian Wang; Shaozhi Deng; Ningsheng Xu; Yanfeng Zhang

2D metallic transition metal dichalcogenides (MTMDCs) are benchmark systems for uncovering the dimensionality effect on fascinating quantum physics, such as charge-density-wave (CDW) order, unconventional superconductivity, and magnetism, etc. However, the scalable and thickness-tunable syntheses of such envisioned MTMDCs are still challenging. Meanwhile, the origin of CDW order at the 2D limit is controversial. Herein, the direct synthesis of wafer-scale uniform monolayer 2H-TaSe2 films and thickness-tunable flakes on Au foils by chemical vapor deposition is accomplished. Based on the thickness-tunable 2H-TaSe2, the robust periodic lattice distortions that relate to CDW orders by low-temperature transmission electron microscopy are directly visualized. Particularly, a phase diagram of the transition temperature from normal metallic to CDW phases with thickness by variable-temperature Raman characterizations is established. Intriguingly, dramatically enhanced transition temperature from bulk value ≈90 to ≈125 K is observed from monolayer 2H-TaSe2, which can be explained by the enhanced electron-phonon coupling mechanism. More importantly, an ultrahigh specific capacitance is also obtained for the as-grown TaSe2 on carbon cloth as supercapacitor electrodes. The results hereby open up novel avenues toward the large-scale preparation of high-quality MTMDCs, and shed light on their applications in exploring some fundamental issues.

Collaboration


Dive into the Liyun Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge