Liza W.J. Toonen
Radboud University Nijmegen Medical Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liza W.J. Toonen.
Journal of Clinical Investigation | 2006
Roger P.M. Sutmuller; Martijn H. den Brok; Matthijs Kramer; Erik J. Bennink; Liza W.J. Toonen; Bart Jan Kullberg; Leo A. B. Joosten; Shizuo Akira; Mihai G. Netea; Gosse J. Adema
Tregs play a central role in the suppression of immune reactions and prevention of autoimmune responses harmful to the host. During acute infection, however, Tregs might hinder effector T cell activity directed toward the elimination of the pathogenic challenge. Pathogen recognition receptors from the TLR family expressed by innate immune cells are crucial for the generation of effective immunity. We have recently shown the CD4CD25 Treg subset in TLR2 mice to be significantly reduced in number compared with WT littermate control mice, indicating a link between Tregs and TLR2. Here, we report that the TLR2 ligand Pam3Cys, but not LPS (TLR4) or CpG (TLR9), directly acts on purified Tregs in a MyD88-dependent fashion. Moreover, when combined with TCR stimulation, TLR2 triggering augmented Treg proliferation in vitro and in vivo and resulted in a temporal loss of the suppressive Treg phenotype in vitro by directly affecting Tregs. Importantly, WT Tregs adoptively transferred into TLR2 mice were neutralized by systemic administration of TLR2 ligand during the acute phase of a Candida albicans infection, resulting in a 100-fold reduced C. albicans outgrowth. This demonstrates that in vivo TLR2 also controls the function of Tregs and establishes a direct link between TLRs and the control of immune responses through Tregs.
International Journal of Cancer | 2007
Oliver Grauer; Stefan Nierkens; Erik J. Bennink; Liza W.J. Toonen; Louis Boon; Pieter Wesseling; Roger P.M. Sutmuller; Gosse J. Adema
The suppressive activity of regulatory T cells (Treg) has been implicated as an important factor limiting immune mediated destruction of tumor cells. However, not much is known about the presence and function of Treg within tumors. Here we show in a syngeneic murine glioma model a time‐dependent accumulation of CD4+FoxP3+ Treg in brain tumors. Further analysis revealed a time‐dependent upregulation of CD25, CTLA‐4, GITR and CXCR4 on intratumoral CD4+FoxP3+ Treg during tumor growth. Moreover, freshly isolated intratumoral Treg were highly suppressive when tested directly ex vivo. Treatment with anti‐CD25 monoclonal antibodies (mAbs) significantly reduced the number of these highly suppressive CD4+FoxP3+ cells within the growing tumor and provoked a CD4 and CD8 T cell dependent destruction of the glioma cells. Combining Treg depletion with administration of blocking CTLA‐4 mAbs further boosted glioma‐specific CD4+ and CD8+ effector T cells as well as antiglioma IgG2a antibody titers resulting in complete tumor eradication without any signs of autoimmunity. These data illustrate that intratumoral accumulation and activation of CD4+FoxP3+ Treg act as a dominant immune escape mechanism for gliomas and underline the importance of controlling tumor‐infiltrating Treg in glioma immunotherapy.
British Journal of Cancer | 2006
M H M G M den Brok; Roger P.M. Sutmuller; Stefan Nierkens; Erik J. Bennink; C Frielink; Liza W.J. Toonen; O C Boerman; Carl G. Figdor; Theo J.M. Ruers; Gosse J. Adema
Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the in vivo induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an ex vivo-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that in situ tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to in vivo enhancement of tumour-specific T-cell numbers, which produced more IFN-γ upon activation. Therefore, in situ tumour destruction in combination with immune modulation creates a unique, ‘in situ DC-vaccine’ that is readily applicable in the clinic without prior knowledge of tumour antigens.
Journal of Immunology | 2008
Oliver Grauer; Johan W. Molling; Erik J. Bennink; Liza W.J. Toonen; Roger P.M. Sutmuller; Stefan Nierkens; Gosse J. Adema
Local TLR stimulation is an attractive approach to induce antitumor immunity. In this study, we compared various TLR ligands for their ability to affect murine GL261 cells in vitro and to eradicate established intracerebral murine gliomas in vivo. Our data show that GL261 cells express TLR2, TLR3, and TLR4 and respond to the corresponding TLR ligands with increasing MHC class I expression and inducing IL-6 secretion in vitro, while TLR5, TLR7, and TLR9 are essentially absent. Remarkably, CpG-oligonucleotides (CpG-ODN, TLR9) appeared to inhibit GL261 cell proliferation in a cell-type specific, but CpG-motif and TLR9-independent manner. A single intratumoral injection of CpG-ODN most effectively inhibited glioma growth in vivo and cured 80% of glioma-bearing C57BL/6 mice. Intratumoral injection of Pam3Cys-SK4 (TLR1/2) or R848 (TLR7) also produced a significant survival benefit, whereas poly(I:C) (TLR3) or purified LPS (TLR4) stimulation alone was not effective. Additional studies using TLR9+/+ wild-type and TLR9−/− knockout mice revealed that the efficacy of local CpG-ODN treatment in vivo required TLR9 expression on nontumor cells. Additional experiments demonstrated increased frequencies of tumor-infiltrating IFN-γ producing CD4+ and CD8+ effector T cells and a marked increase in the ratio of CD4+ effector T cells to CD4+FoxP3+ regulatory T cells upon CpG-ODN treatment. Surviving CpG-ODN treated mice were also protected from a subsequent tumor challenge without further addition of CpG-ODN. In summary, this study underlines the potency of local TLR treatment in antiglioma therapy and demonstrates that local CpG-ODN treatment most effectively restores antitumor immunity in a therapeutic murine glioma model.
International Journal of Cancer | 2007
Oliver Grauer; Roger P.M. Sutmuller; Wendy W. C. van Maren; Joannes F.M. Jacobs; Erik J. Bennink; Liza W.J. Toonen; Stefan Nierkens; Gosse J. Adema
Both melanoma and glioma cells are of neuroectodermal origin and share common tumor associated antigens. In this article, we report that the melanocyte differentiation antigen TRP2 (tyrosinase‐related protein 2) is not predominately involved in the tumor rejection of a syngeneic murine glioma. Although GL261 glioma cells endogenously expressed TRP2 and were lysed by TRP2 specific cytotoxic T cells (CTLs) in vitro, vaccinations with TRP2 peptide‐pulsed dendritic cells (DCs) could only induce minor antiglioma responses in a prophylactic setting and failed to work in a stringent setting where vaccine and tumor were administered on the same day. Further analysis revealed that TRP2 is not recognized by bulk CTLs after depletion of regulatory T cells which results in tumor rejections in vivo. In contrast to TRP2 peptide‐pulsed DC, tumor lysate‐pulsed DCs were more potent as a vaccine and completely protected mice from tumor outgrowth in a prophylactic setting. However, the vaccine efficacy of tumor lysate‐pulsed DC was not sufficient to prevent the tumor outgrowth when tumors were inoculated the same day. In this case, Treg depletion before vaccination was essential to boost antiglioma immune responses leading to the rejection of 80% of the mice and long‐term immunity. Therefore, we conclude that counteracting the immunosuppressive glioma tumor environment via depletion of regulatory T cells is a prerequisite for successful eradication of gliomas after targeting multiple tumor antigens by using tumor lysate‐pulsed DCs as a vaccine in a more stringent setting.
Cellular Microbiology | 2007
Matthijs Kramer; Barbara M. Schulte; Liza W.J. Toonen; Mike de Bruijni; Jochem M. D. Galama; Gosse J. Adema; Frank J. M. van Kuppeveld
Coxsackie B viruses (CVB) and Echoviruses (EV) form a single species; Human enterovirus B (HeV‐B), within the genus Enterovirus. Although HeV‐B infections are usually mild or asymptomatic, they can cause serious acute illnesses. In addition, HeV‐B infections have been associated with chronic immune disorders, such as type 1 diabetes mellitus and chronic myocarditis/dilated cardiomyopathy. It has therefore been suggested that these viruses may trigger an autoimmune process. Here, we demonstrate that human dendritic cells (DCs), which play an essential role in orchestration of the immune response, are productively infected by EV, but not CVB strains, in vitro. Infection does not result in DC activation or the induction of antiviral immune responses. Instead, EV infection rapidly impedes Toll‐like receptor‐mediated production of cytokines and upregulation of maturation markers, and ultimately causes loss of DC viability. These results describe for the first time the effect of EV on the function and viability of human DCs and suggest that infection of DCs in vivo can impede regulation of immune responses.
Journal of Virology | 2008
Matthijs Kramer; Barbara M. Schulte; Liza W.J. Toonen; Paola M. Barral; Paul B. Fisher; Kjerstin Lanke; Jochem M. D. Galama; Frank J. M. van Kuppeveld; Gosse J. Adema
ABSTRACT Dendritic cells (DCs) play a central role in instructing antiviral immune responses. DCs, however, can become targeted by different viruses themselves. We recently demonstrated that human DCs can be productively infected with echoviruses (EVs), but not coxsackie B viruses (CVBs), both of which are RNA viruses belonging to the Enterovirus genus of the Picornaviridae family. We now show that phagocytosis of CVB-infected, type I interferon-deficient cells induces an antiviral state in human DCs. Uptake of infected cells increased the expression of the cytoplasmic RNA helicases retinoic acid-inducible gene I and melanoma differentiation-associated gene 5 as well as other interferon-stimulated genes and protected DCs against subsequent infection with EV9. These effects depended on recognition of viral RNA and could be mimicked by exposure to the synthetic double-stranded RNA analogue poly(I:C) but not other Toll-like receptor (TLR) ligands. Blocking endosomal acidification abrogated protection, suggesting a role for TLRs in the acquisition of an antiviral state in DCs. In conclusion, recognition of viral RNA rapidly induces an antiviral state in human DCs. This might provide a mechanism by which DCs protect themselves against viruses when attracted to an environment with ongoing infection.
Journal of Innate Immunity | 2010
Matthijs Kramer; Barbara M. Schulte; Dagmar Eleveld-Trancikova; M.A. van Hout-Kuijer; Liza W.J. Toonen; Jurjen Tel; I.J.M. de Vries; F.J.M. van Kuppeveld; Bastiaan J.H. Jansen; Gosse J. Adema
Dendritic cells (DCs) are professional antigen-presenting cells that provide a link between innate and adaptive immunity. Multiple DC subsets exist and their activation by microorganisms occurs through binding of conserved pathogen-derived structures to so-called pattern recognition receptors (PRRs). In this study we analyzed the expression of PRRs responding to viral RNA in human monocyte-derived DCs (moDCs) under steady-state or pro-inflammatory conditions. We found that mRNA and protein levels for most PRRs were increased under pro-inflammatory conditions, with the most pronounced increases in the RIG-like helicase (RLH) family. Additionally, freshly isolated human plasmacytoid DCs (pDCs) displayed significantly higher levels of TLR7, RIG-I, MDA5 and PKR as compared to myeloid DCs and moDCs. Finally, we demonstrate for the first time that cross-talk between TLR-matured or virus-stimulated pDCs and moDCs leads to a type I interferon-dependent antiviral state in moDCs. This antiviral state was characterized by enhanced RLH expression and protection against picornavirus infection. These findings might represent a novel mechanism by which pDCs can preserve the function and viability of myeloid DCs that are attracted to a site with ongoing infection, thereby optimizing the antiviral immune response.
BMC Immunology | 2011
Wendy W. C. van Maren; Stefan Nierkens; Liza W.J. Toonen; Judith M Bolscher; Roger P.M. Sutmuller; Gosse J. Adema
BackgroundRegulatory T cells (Treg) play a crucial role in maintaining immune homeostasis and self-tolerance. The immune suppressive effects of Tregs should however be limited in case effective immunity is required against pathogens or cancer cells. We previously found that the Toll-like receptor 2 (TLR2) agonist, Pam3CysSK4, directly stimulated Tregs to expand and temporarily abrogate their suppressive capabilities. In this study, we evaluate the effect of Pam3CysSK4 and Legionella pneumophila, a natural TLR2 containing infectious agent, on effector T (Teff) cells and dendritic cells (DCs) individually and in co-cultures with Tregs.ResultsTLR2 agonists can directly provide a co-stimulatory signal inducing enhanced proliferation and cytokine production of naive CD4+ Teff cells. With respect to cytokine production, DCs appear to be most sensitive to low amounts of TLR agonists. Using wild type and TLR2-deficient cells in Treg suppression assays, we accordingly show that all cells (e.g. Treg, Teff cells and DCs) contributed to overcome Treg-mediated suppression of Teff cell proliferation. Furthermore, while TLR2-stimulated Tregs readily lost their ability to suppress Teff cell proliferation, cytokine production by Teff cells was still suppressed. Similar results were obtained upon stimulation with TLR2 ligand containing bacteria, Legionella pneumophila.ConclusionsThese findings indicate that both synthetic and natural TLR2 agonists affect DCs, Teff cells and Treg directly, resulting in multi-modal modulation of Treg-mediated suppression of Teff cells. Moreover, Treg-mediated suppression of Teff cell proliferation is functionally distinct from suppression of cytokine secretion.
Annals of the Rheumatic Diseases | 2009
A.W.T. van Lieshout; R. van der Voort; Liza W.J. Toonen; S.F.G. van Helden; Carl G. Figdor; P.L.C.M. van Riel; T.R.D.J. Radstake; Gosse J. Adema
Objective: Chemokine (C-X-C motif) ligand 16 (CXCL16) is secreted by macrophages and dendritic cells (DCs) to attract memory type T cells. CXCL16 expression is increased in arthritic joints of patients with rheumatoid arthritis (RA) and a role for CXCL16 has been suggested in the pathogenesis of RA. To date, little is known about the regulation of CXCL16 on monocytes/macrophages and DCs. The aim of this study was to elucidate how CXCL16 expression is regulated in healthy donors and patients with RA. Methods: CD14+cells were isolated from the peripheral blood or synovial fluid of patients with RA and healthy controls, differentiated into different types of dendritic cells or macrophages and stimulated with various cytokines or lipopolysaccharide (LPS). Cell surface proteins, including surface CXCL16, were measured by flow cytometry and soluble CXCL16 was measured by ELISA. Results: Distinct types of dendritic cells constitutively express and secrete CXCL16, which is not affected by maturation. Monocytes rapidly upregulate membrane-bound CXCL16 expression and release soluble CXCL16 upon culture. CXCL16 expression by monocytes is transiently inhibited by the Toll-like receptor (TLR)4 ligand LPS. Th2 type cytokines inhibit soluble CXCL16, whereas T helper (Th)1 cell stimulus enhances its release. In RA monocytes/macrophages, neither CXCL16 expression, nor CXCL16 regulation is different from healthy controls. Conclusions: Culture of monocytes is the main trigger for CXCL16 surface expression in vitro, which is not altered in RA. Together our data suggest that the increased CXCL16 expression in patients with RA is likely to be caused by increased influx of monocytes rather than intrinsic differences in CXCL16 regulation.