Lizbeth Salazar-Villatoro
CINVESTAV
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lizbeth Salazar-Villatoro.
International Journal for Parasitology | 2009
Fernando López-Soto; Arturo González-Robles; Lizbeth Salazar-Villatoro; Nidia León-Sicairos; Carolina Piña-Vázquez; Eduardo Perez Salazar; Mireya de la Garza
Entamoeba histolytica is a parasitic protozoan that produces dysentery and often reaches the liver, leading to abscess formation. Ferritin is an iron-storage protein that is mainly found in liver and spleen in mammals. The liver contains a plentiful source of iron for amoebae multiplying in that organ, making it a prime target for infection since iron is essential for the growth of this parasite. The aim of this study was to determine whether trophozoites are able to take up ferritin and internalise this protein for their growth in axenic culture. Interaction between the amoebae and ferritin was studied by flow cytometry, confocal laser-scanning microscopy and transmission electron microscopy. Amoebae were viable in iron supplied by ferritin. Trophozoites quickly internalised ferritin via clathrin-coated vesicles, a process that was initiated within the first 2 min of incubation. In 30 min, ferritin was found colocalizing with the LAMP-2 protein at vesicles in the cytosol. The uptake of ferritin was time- temperature- and concentration-dependent, specific and saturated at 46 nM of ferritin. Haemoglobin and holo-transferrin did not compete with ferritin for binding to amoebae. Amoebae cleaved ferritin leading to the production of several different sized fragments. Cysteine proteases of 100, 75 and 50 kDa from amoeba extracts were observed in gels copolymerised with ferritin. For a pathogen such as E. histolytica, the capacity to utilise ferritin as an iron source may well explain its high pathogenic potential in the liver.
Journal of Eukaryotic Microbiology | 2009
Bibiana Chávez-Munguía; Maritza Omaña-Molina; Guadalupe Castañón; Patricia Bonilla; Mónica González-Lázaro; Dolores Hernandez-Martinez; Lizbeth Salazar-Villatoro; Amelia Esparza-García; Adolfo Martínez-Palomo; Guadalupe Ortega-Pierres
ABSTRACT. An important aspect of the biology of Naegleria sp. is the differentiation processes that occur during encystation and excystation. We studied these using both fluorescence and transmission electron microscopy techniques. In the initial stages of encystation, the cisternae of the endoplasmic reticulum became densely filled with a fibrillar material. Vesicles with a similar content that appeared to be derived from the cisternae were also observed in close contact with the plasma membrane. As encystation progressed, the fibrillar material became localized on the surface of the amoeba. An irregular compaction was observed in some areas of the cyst wall, which contained thin extensions of the cyst wall fibrillar material. Completely formed cysts had two to three ostioles, each sealed by an operculum. The operculum contained two areas in which a differential compaction of the fibrillar structure was observed. When excystation was induced, small dense granules (DGs), which were in close contact with fibrillar material were observed in the cyst cytoplasm and in the peritrophic space. During excystation, the more compact component of the operculum moves to enable the pseudopod of the emerging trophozoite to penetrate the ostiole. Vacuoles containing a fibrillar material, probably derived from the cyst wall, were observed in the cytoplasm of the pseudopodia. Our results provide a platform for further studies using biochemical markers to investigate the origin of the cyst wall as well as the role of DGs during excystation in Naegleria.
BioMed Research International | 2014
Daniel Talamás-Lara; Bibiana Chávez-Munguía; Arturo González-Robles; Patricia Talamás-Rohana; Lizbeth Salazar-Villatoro; Ángel Durán-Díaz; Adolfo Martínez-Palomo
Entamoeba histolytica is the causative agent of human intestinal and liver amebiasis. The extraordinary phagocytic activity of E. histolytica trophozoites has been accepted as one of the virulence mechanisms responsible for their invasive capacity. The recognition of the noninvasive Entamoeba dispar as a different species has raised the question as to whether the lack of pathogenic potential of this ameba correlates with a limited phagocytic capacity. We have therefore compared the process of erythrophagocytosis in both species by means of light and video microscopy, hemoglobin measurement, and the estimation of reactive oxygen species (ROS). In the present study, we confirmed that E. dispar has lower erythrophagocytic capacity. We also observed by video microscopy a new event of erythrocyte opsonization-like in both species, being more characteristic in E. histolytica. Moreover, E. dispar showed a lower capacity to produce ROS compared with the invasive species and also showed a large population of amoebae that did not engulf any erythrocyte over time. Our results demonstrate that E. histolytica has a higher phagocytic capacity than E. dispar, including a higher rate of production of ROS in the course of ingesting red blood cells.
BioMed Research International | 2013
Maritza Omaña-Molina; Arturo González-Robles; Lizbeth Salazar-Villatoro; Jacob Lorenzo-Morales; Ana Ruth Cristóbal-Ramos; Verónica Ivonne Hernández-Ramírez; Patricia Talamás-Rohana; Adolfo René Méndez Cruz; Adolfo Martínez-Palomo
The morphological analysis of the cytopathic effect on MDCK cell monolayers and hamster cornea and qualitative and quantitative analyses of conditioned medium and proteases were evaluated and compared between two strains of Acanthamoeba genotype T4. Further than highlighting the biological differences found between both strains, the most important observation in this study was the fact that proteases both in total extracts and in conditioned medium are apparently not determinant in tissue destruction. An interestingly finding was that no lysis of corneal tissue was observed as it was previously suggested. These results, together with previous studies, allow us to conclude that the invasion and disruption of corneal tissue is performed by the penetration of the amoebae through cell junctions, either by the action of proteases promoting cellular separation but not by their destruction and/or a mechanical effect exerted by amoebae. Therefore, contact-dependent mechanisms in Acanthamoeba pathogenesis are more relevant than it has been previously considered. This is supported because the phagocytosis of recently detached cells as well as those attached to the corneal epithelium leads to the modification of the cellular architecture facilitating the migration and destruction of deeper layers of the corneal epithelium.
Journal of Eukaryotic Microbiology | 2011
Bibiana Chávez-Munguía; Norma Segovia-Gamboa; Lizbeth Salazar-Villatoro; Maritza Omaña-Molina; Martha Espinosa-Cantellano; Adolfo Martínez-Palomo
ABSTRACT. Cysts of Naegleria fowleri present an external single‐layered cyst wall. To date, little information exists on the biochemical components of this cyst wall. Knowledge of the cyst wall composition is important to understand its resistance capacity under adverse environmental conditions. We have used of a monoclonal antibody (B4F2 mAb) that specifically recognizes enolase in the cyst wall of Entamoeba invadens. By Western blot assays this antibody recognized in soluble extracts of N. fowleri cysts a 48‐kDa protein with similar molecular weight to the enolase reported in E. invadens cysts. Immunofluorescence with the B4F2 mAb revealed positive cytoplasmic vesicles in encysting amebas, as well as a positive reaction at the cell wall of mature cysts. Immunoelectron microscopy using the same monoclonal antibody confirmed the presence of enolase in the cell wall of N. fowleri cysts and in cytoplasmic vesicular structures. In addition, the B4F2 mAb had a clear inhibitory effect on encystation of N. fowleri.
Journal of Parasitology Research | 2014
Arturo González-Robles; Lizbeth Salazar-Villatoro; Maritza Omaña-Molina; María Reyes-Batlle; Carmen M. Martín-Navarro; Jacob Lorenzo-Morales
Light and transmission electron microscopy observations are reported on the structure and in vitro cytopathic effect of Acanthamoeba griffini trophozoites isolated from a clinical case. Live trophozoites were moderately active with a remarkable pleomorphism which changed from ovoid to quite elongated shapes. When moving, amoebae formed cytoplasmic projections such as wide lamellae and acanthopodia of diverse size and thickness which contain a significant amount of actin. Ultrastructurally, the cytoplasm showed the main organelles found in other free-living amoebae. Coincubation of trophozoites with MDCK cell monolayers resulted in a local damage to target cells after 24 h of interaction, suggesting that the cytopathic effect is contact-dependent. By transmission electron microscopy, amoebae appeared to engulf small portions of the MDCK cells; however, the cells that were not in contact with trophozoites had an unaltered morphology. When epithelial monolayers were incubated with conditioned medium for 24 h, small areas of cell injury were also observed. The phylogenetical analysis as well as the sequencing of the acquired amplified product for the DF3 region of the amoebae isolate confirmed that it belongs to genotype T3, which includes other pathogenic amoebae; besides the activity of two drugs currently used against Acanthamoeba was tested on A. griffini.
Parasitology Research | 2012
Bibiana Chávez-Munguía; Patricia Talamás-Rohana; Guadalupe Castañón; Lizbeth Salazar-Villatoro; Verónica Ivonne Hernández-Ramírez; Adolfo Martínez-Palomo
The rapid redistribution of surface antigen–antibody complexes in trophozoites of the human protozoan parasite Entamoeba histolytica, in a process known as capping, has been considered as a means of the parasite to evade the host immune response. So far, capping has been documented in the invasive E. histolytica, whereas the mobility of surface components in the non-invasive Entamoeba dispar is not known. E. dispar does not induce liver lesions in rodent experimental models, in contrast to the liver abscesses produced by E. histolytica in the same animal model. We have therefore analyzed the mobility of surface receptors to the lectin concanavalin A and of Rab11, a membrane-associated protein, in both species of Entamoebae by confocal fluorescence microscopy and transmission and scanning electron microscopy. The great majority of E. histolytica trophozoites became morphologically polarized through the formation of well-defined caps at the posterior pole of the parasite. Actin colocalized with the lectin caps. Antibodies against the membrane protein Rab 11 also produced capping. In striking contrast, in E. dispar, the mobility of concanavalin A surface receptors was restricted to the formation of irregular surface patches that did no progress to constitute well-defined caps. Also, anti-Rab 11 antibodies did not result in capping in E. dispar. Whether the failure of E. dispar to efficiently mobilize surface molecules in response to lectin or antibodies as shown in the present results is related to its non-invasive character represents an interesting hypothesis requiring further analysis.
Experimental Parasitology | 2012
Arturo González-Robles; Lizbeth Salazar-Villatoro; Mónica González-Lázaro; Maritza Omaña-Molina; Adolfo Martínez-Palomo
Some structural observations on cultured Vahlkampfia sp. trophozoites are reported. Trophozoites are active and pleomorphic, producing large cell protrusions related to locomotion such as lamellipodia, filopodia and endocytic structures formed by hyaline cytoplasm, in which actin provides a framework that allows rapid changes in morphology. As observed by transmission electron microscopy, the cytoplasm is highly granular masking some cell organelles and the major cytoplasmic membrane systems. The structure of cell organelles such as the nucleus, endoplasmic reticulum, and digestive vacuoles is described. A common finding was the presence of 50 nm electron-dense round granules that are not limited by a membrane and that appear scattered in the cytoplasm, and whose function remains unknown. Apparently, the cell reserve material is glycogen, since complete trophozoites were positive to Schiff periodic-acid technique.
Virology | 2016
Ana C. Alcalá; Fernando Medina; Arturo González-Robles; Lizbeth Salazar-Villatoro; Rogelio Jaime Fragoso-Soriano; Carlos Vásquez; Margot Cervantes-Salazar; Rosa M. del Angel; Juan E. Ludert
Dengue virus NS1 is a glycoprotein of 46-50kDa which associates as a dimer to internal and cytoplasmic membranes and is also secreted, as a hexamer, to the extracellular milieu. However, the notion exist that NS1 is secreted only from infected vertebrate and not mosquito cells. In this work, evidence is presented showing that NS1 is secreted efficiently by infected mosquito cells. NS1 was detected in cell supernatants starting at 6hpi with a continuous concentration increase up to 24hpi. Nevertheless, cell viability showed an average cell survival of 97%. At variance with observations with vertebrate cells, NS1 does not seems to associate with the cytoplasmic membrane of insect cells. Finally, evidence is presented indicating that NS1 is secreted from insect cells as a barrel-shaped hexamer. These findings provide new insights into the biology of NS1 and open questions about the role of secreted NS1 in the vector mosquito.
Eye & Contact Lens-science and Clinical Practice | 2014
Maritza Omaña-Molina; Arturo González-Robles; Lizbeth Salazar-Villatoro; Alexander Bernal-Escobar; Ángel Durán-Díaz; Adolfo René Méndez-Cruz; Adolfo Martínez-Palomo
Purpose: To describe the adhesion properties of Acanthamoeba castellanii trophozoites to silicone hydrogel contact lenses of first generation (lotrafilcon A), second generation (galyfilcon A), and third generation (comfilcon A) and correlate the results with their specific surface characteristics, time of interaction, and suspension media. Methods: Qualitative and quantitative assessments of the adhesion of 200 trophozoites of A. castellanii on contact lenses in culture medium (Bacto Casitone) and isotonic saline (IS) at different time points (15 minutes and 6 hours) were determined. Results: By scanning electron microscopy, A. castellanii trophozoites were observed firmly adhered to the surface of hydrogel lenses after 15 minutes of interaction. The surface of lotrafilcon A lenses on which amoebae adhere better (16.4±10.2 amoebae/lens section) is rough and folded, which increases the contact surface with trophozoites, allowing acanthopodia to attach firmly. Contrarily, galyfilcon A lenses have a smoother surface, and lower numbers of amoebae were observed adhered to these lenses (4.7±2.9 amoebae/lens section). Even fewer amoebae adhered to the smoother surface of the comfilcon A lens (2.2±1.7 amoebae/lens section). Trophozoites showed similar behavior in both Bacto Casitone medium and IS. Conclusion: A rough surface may contribute to better adhesion of amoebae to silicone hydrogel lenses. Although a reduced numbers of trophozoites adhered to smooth lenses, trophozoites are a risk factor for amoebic keratitis. Isotonic saline facilitated trophozoite survival, suggesting that homemade saline solutions may contribute to the persistence of trophozoites, especially when there is no proper hygiene regimen used with the contact lens cases.