Lizeth H. Sloot
VU University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lizeth H. Sloot.
Gait & Posture | 2011
Kimberley S. van Schooten; Lizeth H. Sloot; Sjoerd M. Bruijn; Herman Kingma; Onno G. Meijer; Mirjam Pijnappels; Jaap H. van Dieën
For targeted prevention of falls, it is necessary to identify individuals with balance impairments. To test the sensitivity of measures of variability, local stability and orbital stability of trunk kinematics to balance impairments during gait, we used galvanic vestibular stimulation (GVS) to impair balance in 12 young adults while walking on a treadmill at different speeds. Inertial sensors were used to measure trunk accelerations, from which variability in the medio-lateral direction and local and orbital stability were calculated. The short-term Lyapunov exponent and variability reflected the destabilizing effect of GVS, while the long-term Lyapunov exponent and Floquet multipliers suggested increased stability. Therefore, we concluded that only short-term Lyapunov exponents and variability can be used to asses stability of gait. In addition, to investigate the feasibility of using these measures in screening for fall risk, the presence or absence of GVS was predicted with variability and the short-term Lyapunov exponent. Predictions were good at all walking speeds, but best at preferred walking speed, with a correct classification in 83.3% of the cases.
Gait & Posture | 2013
Lizeth H. Sloot; M.M. van der Krogt; Jaap Harlaar
Instrumented treadmills are increasingly used in gait research, although the imposed walking speed is suggested to affect gait performance. A feedback-controlled treadmill that allows subjects to walk at their preferred speed, i.e. functioning in a self-paced (SP) mode, might be an attractive alternative, but could disturb gait through accelerations of the belt. We compared SP with fixed speed (FS) treadmill walking, and also considered various feedback modes. Nineteen healthy subjects walked on a dual-belt instrumented treadmill. Spatio-temporal, kinematic and kinetic gait parameters were derived from both the average stride patterns and stride-to-stride variability. For 15 out of 70 parameters significant differences were found between SP and FS. These differences were smaller than 1cm, 1°, 0.2 Nm and 0.2 W/kg for respectively stride length and width, joint kinematics, moments and powers. Since this is well within the normal stride variability, these differences were not considered to be clinically relevant, indicating that SP walking is not notably affected by belt accelerations. The long-term components of walking speed variability increased during SP walking (43%, p<0.01), suggesting that SP allows for more natural stride variability. Differences between SP feedback modes were predominantly found in the timescales of walking speed variability, while the gait pattern was similar between modes. Overall, the lack of clinically significant differences in gait pattern suggests that SP walking is a suitable alternative to fixed speed treadmill walking in gait analysis.
Gait & Posture | 2014
Lizeth H. Sloot; M.M. van der Krogt; Jaap Harlaar
Differences in gait between overground and treadmill walking are suggested to result from imposed treadmill speed and lack of visual flow. To counteract this effect, feedback-controlled treadmills that allow the subject to control the belt speed along with an immersive virtual reality (VR) have recently been developed. We studied the effect of adding a VR during both fixed speed (FS) and self-paced (SP) treadmill walking. Nineteen subjects walked on a dual-belt instrumented treadmill with a simple endless road projected on a 180° circular screen. A main effect of VR was found for hip flexion offset, peak hip extension, peak knee extension moment, knee flexion moment gain and ankle power during push off. A consistent interaction effect between VR and treadmill mode was found for 12 out of 30 parameters, although the differences were small and did not exceed 50% of the within subject stride variance. At FS, the VR seemed to slightly improve the walking pattern towards overground walking, with for example a 6.5mm increase in stride length. At SP, gait became slightly more cautious by adding a VR, with a 9.1mm decrease in stride length. Irrespective of treadmill mode, subjects rated walking with the VR as more similar to overground walking. In the context of clinical gait analysis, the effects of VR are too small to be relevant and are outweighed by the gains of adding a VR, such as a more stimulating experience and possibility of augmenting it by real-time feedback.
Gait & Posture | 2014
Marjolein M. van der Krogt; Lizeth H. Sloot; Jaap Harlaar
Treadmill walking offers several advantages for clinical gait analysis and gait training, but may affect gait parameters. We compared walking on a self-paced treadmill in a virtual environment (TM+) with overground walking in a conventional gait lab (CGL), and with natural walking (NW) outside a lab environment on a GaitRite measurement mat, for 11 typically developing (TD) children and 9 children with cerebral palsy (CP). Spatiotemporal parameters and subjective scores on similarity to normal walking were compared between all three conditions, while kinematic parameters and Gait and Motion Analysis Profile Scores (GPS and MAP) were compared between CGL and TM+. Subjects walked slower and with shorter strides in both lab conditions compared to NW. Stride width was 3-4 cm wider in TM+ than in CGL and NW. Mean kinematic curves showed a few differences between CGL and TM+: on the treadmill children with CP walked with on average 2° more pelvic tilt, 7° more knee flexion at initial contact, and more deviating knee and ankle kinematics as indicated by the MAP scores. These differences may in part be due to increased fatigue in TM+ as a result of longer continuous walking time. Our results indicate that differences between self-paced treadmill walking in a VR and walking in a conventional gait lab are generally small, but need to be taken into account when performing gait analysis on a treadmill.
Journal of Biomechanics | 2015
Marjolein M. van der Krogt; Lizeth H. Sloot; Annemieke I. Buizer; Jaap Harlaar
Kinetic outcomes are an essential part of clinical gait analysis, and can be collected for many consecutive strides using instrumented treadmills. However, the validity of treadmill kinetic outcomes has not been demonstrated for children with cerebral palsy (CP). In this study we compared ground reaction forces (GRF), center of pressure, and hip, knee and ankle moments, powers and work, between overground (OG) and self-paced treadmill (TM) walking for 11 typically developing (TD) children and 9 children with spastic CP. Considerable differences were found in several outcome parameters. In TM, subjects demonstrated lower ankle power generation and more absorption, and increased hip moments and work. This shift from ankle to hip strategy was likely due to a more backward positioning of the hip and a slightly more forward trunk lean. In mediolateral direction, GRF and hip and knee joint moments were increased in TM due to wider step width. These findings indicate that kinetic data collected on a TM cannot be readily compared with OG data in TD children and children with CP, and that treadmill-specific normative data sets should be used when performing kinetic gait analysis on a treadmill.
Gait & Posture | 2015
Lizeth H. Sloot; Jaap Harlaar; Marjolein M. van der Krogt
While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the effect of self-paced (SP) versus fixed speed (FS) walking and of walking with and without a virtual reality (VR) in 11 typically developing (TD) children and nine children with cerebral palsy (CP). We found that subjects walked in SP mode with twice as much between-stride walking speed variability (p<0.01), fluctuating over multiple strides. There was no main effect of SP on kinematics or kinetics, but small interaction effects between SP and group (TD versus CP) were found for five out of 33 parameters. This suggests that children with CP might need more time to familiarize to SP walking, however, these differences were generally too small to be clinically relevant. The VR environment did not affect the kinematic or kinetic parameters, but walking with VR was rated as more similar to overground walking by both groups (p=0.02). The results of this study indicate that both SP and FS walking, with and without VR, can be used interchangeably for treadmill-based clinical gait analysis in children with and without CP.
European Journal of Neurology | 2017
J.C. van den Noort; L Bar-On; Erwin Aertbeliën; M Bonikowski; Siri Merete Brændvik; Eva W. Broström; Annemieke I. Buizer; Jane Burridge; A. Van Campenhout; Bernard Dan; J F Fleuren; Sebastian Grunt; Florian Heinen; H L Horemans; C Jansen; A Kranzl; B K Krautwurst; M.M. van der Krogt; S Lerma Lara; Cecilia M. Lidbeck; J-P Lin; I. Martínez; Carel G.M. Meskers; D Metaxiotis; Guy Molenaers; Dimitrios Patikas; O. Rémy-Néris; Karin Roeleveld; Adam Shortland; J Sikkens
To support clinical decision‐making in central neurological disorders, a physical examination is used to assess responses to passive muscle stretch. However, what exactly is being assessed is expressed and interpreted in different ways. A clear diagnostic framework is lacking. Therefore, the aim was to arrive at unambiguous terminology about the concepts and measurement around pathophysiological neuromuscular response to passive muscle stretch.
PLOS ONE | 2015
Lizeth H. Sloot; Josien C. van den Noort; Marjolein M. van der Krogt; Sjoerd M. Bruijn; Jaap Harlaar
Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163–191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during treadmill-based clinical gait analysis.
Gait & Posture | 2015
Lizeth H. Sloot; Marjolein M. van der Krogt; Karin L. de Gooijer-van de Groep; Stijn van Eesbeek; Jurriaan H. de Groot; Annemieke I. Buizer; Carel G.M. Meskers; Jules G. Becher; Erwin de Vlugt; Jaap Harlaar
Spastic cerebral palsy (CP) is characterized by increased joint resistance, caused by a mix of increased tissue stiffness, as well as involuntary reflex and background muscle activity. These properties can be quantified using a neuromechanical model of the musculoskeletal complex and instrumented assessment. The construct validity of the neuromechanical parameters was examined (i.e. the internal model validity, effect of knee angle, speed and age, sensitivity to patients versus controls, spasticity severity and treatment), together with the repeatability. We included 38 children with CP and 35 controls. A motor driven footplate applied two slow (15°/s) and two fast (100°/s) rotations around the ankle joint, at two different knee angles. Ankle angle, torque and EMG of the gastrocnemius (GA), soleus (SO) and tibialis anterior (TA) muscle were used to optimize a nonlinear neuromuscular model. Outcome measures were tissue stiffness, reflex and background activity for GA, SO and TA. The internal model validity showed medium to high parameter confidence and good model fits. All parameter could discriminate between patients with CP and controls according to CP pathology. Other measures of external model validity (effect of test position, speed and age) showed behaviour along the lines of current knowledge of physiology. GA/SO background activity was sensitive to spasticity severity, but reflex activity was not. Preliminary data indicated that reflex activity was reduced after spasticity treatment. The between-trial and -day repeatability was moderate to good. The large variance between patients in the ratio of stiffness and neural resistance indicates that the method could potentially contribute to patient-specific treatment selection.
Developmental Medicine & Child Neurology | 2017
Lizeth H. Sloot; Lynn Bar-On; Marjolein M. van der Krogt; Erwin Aertbeliën; Annemieke I. Buizer; Kaat Desloovere; Jaap Harlaar
We compared the outcomes of manual and motorized instrumented ankle spasticity assessments in children with cerebral palsy (CP).