Lizhe Zhu
Hong Kong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lizhe Zhu.
PLOS Computational Biology | 2015
Hanlun Jiang; Fu Kit Sheong; Lizhe Zhu; Xin Gao; Julie Bernauer; Xuhui Huang
Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.
Journal of Computational Chemistry | 2017
Song Liu; Lizhe Zhu; Fu Kit Sheong; Wei Wang; Xuhui Huang
We present an efficient density‐based adaptive‐resolution clustering method APLoD for analyzing large‐scale molecular dynamics (MD) trajectories. APLoD performs the k‐nearest‐neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high‐density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2–3 orders of magnitude for systems ranging from alanine dipeptide to a 370‐residue Maltose‐binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low‐density regions, while smaller clusters at high‐density regions), which is a clear advantage over other popular clustering algorithms including k‐centers and k‐medoids. We anticipate that APLoD can be widely applied to split ultra‐large MD datasets containing millions of conformations for subsequent construction of Markov State Models.
Journal of Physical Chemistry B | 2016
Lizhe Zhu; Hanlun Jiang; Fu Kit Sheong; Xuefeng Cui; Xin Gao; Yanli Wang; Xuhui Huang
Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Agos but rigid for eukaryotic Agos.
PLOS Computational Biology | 2013
Lizhe Zhu; Peter G. Bolhuis; Jocelyne Vreede
The HAMP domain is a linker region in prokaryotic sensor proteins and relays input signals to the transmitter domain and vice versa. Functional as a dimer, the structure of HAMP shows a parallel coiled-coil motif comprising four helices. To date, it is unclear how HAMP can relay signals from one domain to another, although several models exist. In this work, we use molecular simulation to test the hypothesis that HAMP adopts different conformations, one of which represents an active, signal-relaying configuration, and another an inactive, resting state. We first performed molecular dynamics simulation on the prototype HAMP domain Af1503 from Archaeoglobus fulgidus. We explored its conformational space by taking the structure of the A291F mutant disabling HAMP activity as a starting point. These simulations revealed additional conformational states that differ in the tilt angles between the helices as well as the relative piston shifts of the helices relative to each other. By enhancing the sampling in a metadynamics set up, we investigated three mechanistic models for HAMP signal transduction. Our results indicate that HAMP can access additional conformational states characterized by piston motion. Furthermore, the piston motion of the N-terminal helix of one monomer is directly correlated with the opposite piston motion of the C-terminal helix of the other monomer. The change in piston motion is accompanied by a change in tilt angle between the monomers, thus revealing that HAMP exhibits a collective motion, i.e. a combination of changes in tilt angles and a piston-like displacement. Our results provide insights into the conformational changes that underlie the signaling mechanism involving HAMP.
Physical Chemistry Chemical Physics | 2016
Lizhe Zhu; Fu Kit Sheong; Xiangze Zeng; Xuhui Huang
Constructing Markov State Models (MSMs) based on short molecular dynamics simulations is a powerful computational technique to complement experiments in predicting long-time kinetics of biomolecular processes at atomic resolution. Even though the MSM approach has been widely applied to study one-body processes such as protein folding and enzyme conformational changes, the majority of biological processes, e.g. protein-ligand recognition, signal transduction, and protein aggregation, essentially involve multiple entities. Here we review the attempts at constructing MSMs for multi-body systems, point out the challenges therein and discuss recent algorithmic progresses that alleviate these challenges. In particular, we describe an automatic kinetics based partitioning method that achieves optimal definition of the conformational states in a multi-body system, and discuss a novel maximum-likelihood approach that efficiently estimates the slow uphill kinetics utilizing pre-computed equilibrium populations of all states. We expect that these new algorithms and their combinations may boost investigations of important multi-body biological processes via the efficient construction of MSMs.
Physical Review E | 2007
Maria Werner; Lizhe Zhu; Erik Aurell
The Epstein-Barr virus (EBV) infects more than 90% of the human population, and causes glandular fever as well as several more serious diseases. It is a tumor virus, and has been widely studied as a model system for cell transformation in humans. A central feature of the EBV life cycle is its ability to persist in human B cells in different latency states, denoted latency I, II, and III. In latency III the host cell is driven to cell proliferation and hence expansion of the viral population without entering the lytic pathway, while the latency I state is almost completely dormant. We here study the effective cooperativity of the viral C promoter, active in latency III EBV cell lines. We show that the unusually large number of binding sites of two competing transcription factors, one viral and one from the host, serves to make the switch sharper (higher Hill coefficient), either by cooperative binding between molecules of the same species when they bind, or by competition between the two species if there is sufficient steric hindrance.
Wiley Interdisciplinary Reviews: Computational Molecular Science | 2018
Wei Wang; Siqin Cao; Lizhe Zhu; Xuhui Huang
The function of complex biomolecular machines relies heavily on their conformational changes. Investigating these functional conformational changes is therefore essential for understanding the corresponding biological processes and promoting bioengineering applications and rational drug design. Constructing Markov State Models (MSMs) based on large‐scale molecular dynamics simulations has emerged as a powerful approach to model functional conformational changes of the biomolecular system with sufficient resolution in both time and space. However, the rapid development of theory and algorithms for constructing MSMs has made it difficult for nonexperts to understand and apply the MSM framework, necessitating a comprehensive guidance toward its theory and practical usage. In this study, we introduce the MSM theory of conformational dynamics based on the projection operator scheme. We further propose a general protocol of constructing MSM to investigate functional conformational changes, which integrates the state‐of‐the‐art techniques for building and optimizing initial pathways, performing adaptive sampling and constructing MSMs. We anticipate this protocol to be widely applied and useful in guiding nonexperts to study the functional conformational changes of large biomolecular systems via the MSM framework. We also discuss the current limitations of MSMs and some alternative methods to alleviate them. WIREs Comput Mol Sci 2018, 8:e1343. doi: 10.1002/wcms.1343
Journal of Physical Chemistry Letters | 2017
Xiaoyan Zheng; Lizhe Zhu; Xiangze Zeng; Luming Meng; Lu Zhang; Dong Wang; Xuhui Huang
Amphiphile self-assembly is an essential bottom-up approach of fabricating advanced functional materials. Self-assembled materials with desired structures are often obtained through thermodynamic control. Here, we demonstrate that the selection of kinetic pathways can lead to drastically different self-assembled structures, underlining the significance of kinetic control in self-assembly. By constructing kinetic network models from large-scale molecular dynamics simulations, we show that two largely similar amphiphiles, 1-[11-oxo-11-(pyren-1-ylmethoxy)-undecyl]pyridinium bromide (PYR) and 1-(11-((5a1,8a-dihydropyren-1-yl)methylamino)-11-oxoundecyl)pyridinium bromide (PYN), prefer distinct kinetic assembly pathways. While PYR prefers an incremental growth mechanism and forms a nanotube, PYN favors a hopping growth pathway leading to a vesicle. Such preference was found to originate from the subtle difference in the distributions of hydrophobic and hydrophilic groups in their chemical structures, which leads to different rates of the adhesion process among the aggregating micelles. Our results are in good agreement with experimental results, and accentuate the role of kinetics in the rational design of amphiphile self-assembly.
Progress in Biophysics & Molecular Biology | 2017
Lizhe Zhu; Hanlun Jiang; Fu Kit Sheong; Xuefeng Cui; Yanli Wang; Xin Gao; Xuhui Huang
At the core of RNA interference, the Argonaute proteins (Ago) load and utilize small guide nucleic acids to silence mRNAs or cleave foreign nucleic acids in a sequence specific manner. In recent years, based on extensive structural studies of Ago and its interaction with the nucleic acids, considerable progress has been made to reveal the dynamic aspects of various Ago-mediated processes. Here we review these novel insights into the guide-strand loading, duplex unwinding, and effects of seed mismatch, with a focus on two representative Agos, the human Ago 2 (hAgo2) and the bacterial Thermus thermophilus Ago (TtAgo). In particular, comprehensive molecular simulation studies revealed that although sharing similar overall structures, the two Agos have vastly different conformational landscapes and guide-strand loading mechanisms because of the distinct rigidity of their L1-PAZ hinge. Given the central role of the PAZ motions in regulating the exposure of the nucleic acid binding channel, these findings exemplify the importance of protein motions in distinguishing the overlapping, yet distinct, mechanisms of Ago-mediated processes in different organisms.
Journal of Physical Chemistry Letters | 2017
Qiushi Zhang; Xiaoyan Zheng; Guowen Kuang; Weihua Wang; Lizhe Zhu; Rui Pang; Xingqiang Shi; Xuesong Shang; Xuhui Huang; Pei Nian Liu; Nian Lin
The porphyrin macrocyclic core features dynamic conformational transformations in free space because of its structural flexibility. Once attached to a substrate, the molecule-substrate interaction often restricts this flexibility and stabilizes the porphyrin in a specific conformation. Here using molecular dynamic and density-functional theory simulations and scanning tunneling microscopy and spectroscopy, we investigated the conformation relaxation and stabilization processes of two porphyrin derivatives (5,15-dibromophenyl-10,20-diphenylporphyrin, Br2TPP, and 5,15-diphenylporphyrin, DPP) adsorbed on Au(111) and Pb(111) surfaces. We found that Br2TPP adopts either dome or saddle conformations on Au(111) but only the saddle conformation on Pb(111), whereas DPP deforms to a ruffled conformation on Au(111). We also resolved the structural transformation pathway of Br2TPP from the free-space conformations to the surface-anchored conformations. These findings provide unprecedented insights revealing the conformation adaptation process. We anticipate that our results may be useful for controlling the conformation of surface-anchored porphyrin molecules.