Lizhong Yu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lizhong Yu.
PLOS ONE | 2012
Qiaoling Yan; Jiaojun Zhu; Lizhong Yu
Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation.
PLOS ONE | 2012
Jiaojun Zhu; Yutaka Gonda; Lizhong Yu; Feng-qin Li; Qiaoling Yan; Y.M. Sun
To examine the effects of thinning intensity on wind vulnerability and regeneration in a coastal pine (Pinus thunbergii) forest, thinning with intensities of 20%, 30% and 50% was conducted in December 1997; there was an unthinned treatment as the control (total 8 stands). We re-measured the permanent sites to assess the regeneration characteristics 11 years after thinning. In the 50% thinned stand, seedlings aged from 2 to 10 years exhibited the highest pine seedling density and growth. The age composition ranged from 1–3 years with densities of 9.9 and 5.1 seedlings m−2 in 30% and 20% thinned stands; only 1-year-old seedlings with a density of 6.1 seedlings m−2 in the unthinned stand. Similar trends were found for the regeneration of broadleaved species such as Robinia pseudoacacia and Prunus serrulata. We speculate that the canopy openness and moss coverage contributed to the regeneration success in the 50% thinned stand, while the higher litter depth and lack of soil moisture induced the regeneration failure in the unthinned stand. The stands thinned at 20% or 30% were less favourable for pine regeneration than the stands thinned at 50%. Therefore, thinning with less than 30% canopy openness (20% and 30% thinned stands) should be avoided, and thinning at higher than 30% canopy openness (50% thinned stand, approximately 1500 stems ha−1 at ages 40–50 years) is suggested for increasing regeneration in the coastal pine forest. The implications of thinning-based silviculture in the coastal pine forest management are also discussed. The ongoing development of the broadleaved seedlings calls for further observations.
Plant and Soil | 2018
Tao Yan; Jiaojun Zhu; Kai Yang; Lizhong Yu; Tian Gao
AimsThe changes of nutrient limitation status for tree growth across a plantation chronosequence have great implications for plantation management. The underlying mechanisms for such a shift, however, have seldom been addressed. While plant nutrient use strategies would change in response to soil nutrient alteration, they may also create feedback on soil nutrient dynamics and thus plant nutrient limitation status.MethodsWe examined soil and foliar nutrients of larch (Larix kaempferi), the dominant timber species in Northeast China, across a plantation chronosequence.ResultsTotal soil N increased but total soil P decreased across the chronosequence. Similarly, N concentrations in the green leaves were positively correlated, and P concentrations were negatively correlated with stand age. Foliar N:P ratios, N and P resorption efficiencies and PRE:NRE were positively correlated with stand age, indicating the shift from N-limitation to P-limitation across the chronosequence. P concentration in senesced leaves decreased and N:P ratios increased across the chronosequence, which has implications for decomposition and nutrient release.ConclusionsNutrient resorption, soil pH, biomass P sequestration and imbalanced inputs of N and P would contribute to the occurrence of P-limitation with increased stand age. Furthermore, adaptive fertilization management strategies should consider the shift of nutrient limitation patterns across the chronosequence.
Journal of Forestry Research | 2018
Jiaojun Zhu; Lizhong Yu; Tianle Xu; Xiaohua Wei; Kai Yang
Abstract In the headwater catchments of the Hun River, Northeast China, secondary forests (SF) have been replaced by plantations since the 1960s. Concern has been growing over this loss and the decline in water quality caused by the plantations. To test the effects of plantations on water quality, we selected two separate catchments covered by SF and Pinus koraiensis plantations (KP) to monitor physical and chemical properties of various hydrological variables including throughfall, stemflow, through-litterfall and runoff (flowing out of outlets of the catchments). The physical properties of water declined after water flowed through the two catchments as compared with rainwater. The pH of runoff in both catchments also dramatically decreased. The concentrations of Cl−, NO3− and NH4+ in the runoff from the two catchments were similar (concentrations of Cl− and NH4+ in both catchments were similar to those in rainwater). Total P concentration in runoff of the SF catchment was higher than that of the KP catchment (P concentrations in both catchments were also higher than in rainwater) because P concentrations in litter and soil of the SF catchment were higher than those in the KP catchment. In summary, the rainwater became acidic in both catchments, but the responses of most water quality variables were similar in the two catchments, suggesting that appropriate ratios of KP in SF are feasible for secondary forest recovery and for preserving water quality (KP did not cause a decline in quality) in the headstream regions in Northeast of China.
Journal of Forestry Research | 2011
Kai Wang; Jiaojun Zhu; Qiaoling Yan; Lizhong Yu; Y.M. Sun
To determine light requirement and adaptability of Fraxinus mandshurica seedlings, the seasonal variations of photosynthetic variables were measured in 3-year-old seedlings grown under four light levels (100%, 60%, 30%, and 15% of full sunlight) with a LI-6400 portable photosynthesis system. The leaf chlorophyll content, special leaf weight, annual height and basal diameter increment of seedlings were also observed. The maximum and minimum values of net photosynthetic rate, maximum rate of carboxylation, and maximum rate of electron transport of F. mandshurica seedlings were detected with 60% and 15% of full sunlight treatments, respectively. With the decrease of light level, both light saturation point and special leaf weight significantly declined (p < 0.05), but leaf chlorophyll content significantly increased (p <0.05). Annual height and basal diameter increments of seedlings grown under 60% of full sunlight treatment were significantly greater than those of seedlings under other treatments (p < 0.05). It was concluded that F. mandshurica seedlings can adapt to a wide range of light environments from 15% to 100% of full sunlight by adjusting light saturation point, leaf chlorophyll content and special leaf weight. According to the maximum of relative growth, 60% of full sunlight treatment is the optimum light level for the growth of 3-year-old F. mandshurica seedlings.
Journal of Forest Research | 2010
Jiaojun Zhu; Kai Yang; Qiaoling Yan; Zugen Liu; Lizhong Yu; Hexin Wang
Environmental Monitoring and Assessment | 2013
Ruizhao Wang; Tianle Xu; Lizhong Yu; Jiaojun Zhu; Xiaoyu Li
Plant and Soil | 2010
Qiaoling Yan; Jiaojun Zhu; Jianping Zhang; Lizhong Yu; Zhibin Hu
Annals of Forest Science | 2015
Kai Yang; Jiaojun Zhu; Jiacun Gu; Lizhong Yu; Zhengquan Wang
Forest Ecology and Management | 2017
Tao Yan; Jiaojun Zhu; Kai Yang; Lizhong Yu; Jinxin Zhang