Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ljubov Simson is active.

Publication


Featured researches published by Ljubov Simson.


Journal of Experimental Medicine | 2002

Intrinsic Defect in T Cell Production of Interleukin (IL)-13 in the Absence of Both IL-5 and Eotaxin Precludes the Development of Eosinophilia and Airways Hyperreactivity in Experimental Asthma

Joerg Mattes; Ming Yang; Surendran Mahalingam; Joachim Kuehr; Dianne C. Webb; Ljubov Simson; Simon P. Hogan; Aulikki Koskinen; Andrew N. J. McKenzie; Lindsay A. Dent; Marc E. Rothenberg; Klaus I. Matthaei; Ian G. Young; Paul S. Foster

Interleukin (IL)-5 and IL-13 are thought to play key roles in the pathogenesis of asthma. Although both cytokines use eotaxin to regulate eosinophilia, IL-13 is thought to operate a separate pathway to IL-5 to induce airways hyperreactivity (AHR) in the allergic lung. However, identification of the key pathway(s) used by IL-5 and IL-13 in the disease process is confounded by the failure of anti–IL-5 or anti–IL-13 treatments to completely inhibit the accumulation of eosinophils in lung tissue. By using mice deficient in both IL-5 and eotaxin (IL-5/eotaxin−/−) we have abolished tissue eosinophilia and the induction of AHR in the allergic lung. Notably, in mice deficient in IL-5/eotaxin the ability of CD4+ T helper cell (Th)2 lymphocytes to produce IL-13, a critical regulator of airways smooth muscle constriction and obstruction, was significantly impaired. Moreover, the transfer of eosinophils to IL-5/eotaxin−/− mice overcame the intrinsic defect in T cell IL-13 production. Thus, factors produced by eosinophils may either directly or indirectly modulate the production of IL-13 during Th2 cell development. Our data show that IL-5 and eotaxin intrinsically modulate IL-13 production from Th2 cells and that these signaling systems are not necessarily independent effector pathways and may also be integrated to regulate aspects of allergic disease.


Journal of Immunology | 2007

Regulation of Carcinogenesis by IL-5 and CCL11: A Potential Role for Eosinophils in Tumor Immune Surveillance

Ljubov Simson; Julia I. Ellyard; Lindsay A. Dent; Klaus I. Matthaei; Marc E. Rothenberg; Paul S. Foster; Mark J. Smyth; Christopher R. Parish

The role of the immune system in the surveillance of transformed cells has seen a resurgence of interest in the last 10 years, with a substantial body of data in mice and humans supporting a role for the immune system in host protection from tumor development and in shaping tumor immunogenicity. A number of earlier studies have demonstrated that eosinophils, when recruited into tumors, can very effectively eradicate transplantable tumors. In this study, we investigated whether eosinophils also play a role in tumor immune surveillance by determining the incidence of methylcholanthrene (MCA)-induced fibrosarcomas in IL-5 transgenic mice that have greatly enhanced levels of circulating eosinophils, CCL11 (eotaxin-1)-deficient mice that lack a key chemokine that recruits eosinophils into tissues, and the eosinophil-deficient mouse strains, IL-5/CCL11−/− and ΔdblGATA. It was found that MCA-induced tumor incidence and growth were significantly attenuated in IL-5 transgenic mice of both the BALB/c and C57BL/6 backgrounds. Histological examination revealed that the protective effect of IL-5 was associated with massively enhanced numbers of eosinophils within and surrounding tumors. Conversely, there was a higher tumor incidence in CCL11−/− BALB/c mice, which was associated with a reduced eosinophil influx into tumors. This correlation was confirmed in the eosinophil-deficient IL-5/CCL11−/− and ΔdblGATA mouse strains, where tumor incidence was greatly increased in the total absence of eosinophils. In addition, subsequent in vitro studies found that eosinophils could directly kill MCA-induced fibrosarcoma cells. Collectively, our data support a potential role for the eosinophil as an effector cell in tumor immune surveillance.


Journal of Biological Chemistry | 2007

Eotaxin Selectively Binds Heparin AN INTERACTION THAT PROTECTS EOTAXIN FROM PROTEOLYSIS AND POTENTIATES CHEMOTACTIC ACTIVITY IN VIVO

Julia I. Ellyard; Ljubov Simson; Anna Bezos; Kellie Johnston; Craig Freeman; Christopher R. Parish

An important feature of chemokines is their ability to bind to the glycosaminoglycan (GAG) side chains of proteoglycans, predominately heparin and heparan sulfate. To date, all chemokines tested bind to immobilized heparin in vitro, as well as cell surface heparan sulfate in vitro and in vivo. These interactions play an important role in modulating the action of chemokines by facilitating the formation of stable chemokine gradients within the vascular endothelium and directing leukocyte migration, by protecting chemokines from proteolysis, by inducing chemokine oligomerization, and by facilitating transcytosis. Despite the importance of eotaxin in eosinophil differentiation and recruitment being well established, little is known about the interaction between eotaxin and GAGs and the functional consequences of such an interaction. Here we report that eotaxin binds selectively to immobilized heparin with high affinity (Kd = 1.23 × 10-8 m), but not to heparan sulfate or a range of other GAGs. The interaction of eotaxin with heparin does not promote eotaxin oligomerization but protects eotaxin from proteolysis directly by plasmin and indirectly by cathepsin G and elastase. In vivo, co-administration of eotaxin and heparin is able to significantly enhance eotaxin-mediated eosinophil recruitment in a mouse air-pouch model. Furthermore, when heparin is co-administered with eotaxin at a concentration that does not normally result in eosinophil infiltration, eosinophil recruitment occurs. In contrast, heparin does not enhance eotaxin-mediated eosinophil chemotaxis in vitro, suggesting protease protection or haptotactic gradient formation as the mechanism by which heparin enhances eotaxin action in vivo. These results suggest a role for mast cell-derived heparin in the recruitment of eosinophils, reinforcing Th2 polarization of inflammatory responses.


Journal of Leukocyte Biology | 2004

Eosinophil degranulation in the allergic lung of mice primarily occurs in the airway lumen

Kristopher Clark; Ljubov Simson; Nicole Newcombe; Aulikki Koskinen; Joerg Mattes; Nancy A. Lee; James J. Lee; Lindsay A. Dent; Klaus I. Matthaei; Paul S. Foster

Eosinophil degranulation is thought to play a pivotal role in the pathogenesis of allergic disorders. Although mouse models of allergic disorders have been used extensively to identify the contribution of eosinophils to disease, ultrastructural evidence of active granule disassembly has not been reported. In this investigation, we characterized the degree of eosinophil activation in the bone marrow, blood, lung tissue, and airways lumen [bronchoalveolar lavage fluid (BALF)] of ovalbumin‐sensitized and aero‐challenged wild‐type and interleukin‐5 transgenic mice. Degranulation was most prominent in and primarily compartmentalized to the airways lumen. Eosinophils released granule proteins by the process of piecemeal degranulation (PMD). Accordingly, recruitment and activation of eosinophils in the lung correlated with the detection of cell‐free eosinophil peroxidase in BALF and with the induction of airways hyper‐reactivity. As in previous studies with human eosinophils, degranulation of isolated mouse cells did not occur until after adherence to extracellular matrix. However, higher concentrations of exogenous stimuli appear to be required to trigger adherence and degranulation (piecemeal) of mouse eosinophils when compared with values reported for studies of human eosinophils. Thus, mouse eosinophils undergo PMD during allergic inflammation, and in turn, this process may contribute to pathogenesis. However, the degranulation process in the allergic lung of mice is primarily compartmentalized to the airway lumen. Understanding the mechanism of eosinophil degranulation in the airway lumen may provide important insights into how this process occurs in human respiratory diseases.


Immunology and Cell Biology | 2000

Chemokine and cytokine cooperativity: Eosinophil migration in the asthmatic response

Ljubov Simson; Paul S. Foster

Eosinophils play a central role in the pathophysiology of allergic disease. The mechanisms that regulate eosinophil migration are complex; however, chemokines and cytokines produced in both the early and late phases of the asthmatic response appear to cooperate in eosinophil recruitment. In particular, there exists a unique synergy between eotaxin and IL‐5. The role of chemokine/cytokine cooperativity has been investigated in the extracellular matrix, adhesion molecule/integrin interactions, receptor polarization and aggregation and the convergence and divergence of intracellular signalling pathways. Understanding the mechanisms whereby eosinophils migrate will allow the development of specific therapeutic strategies aimed at attenuating specific components of the allergic response.


Journal of Immunotherapy | 2010

Alternatively activated macrophage possess antitumor cytotoxicity that is induced by il-4 and mediated by arginase-1

Julia I. Ellyard; Ben J. C. Quah; Ljubov Simson; Christopher R. Parish

Earlier studies have shown that the adoptive transfer of Th2-polarized CD4+ T cells can clear established tumors from mice in an antigen-specific manner. Although eosinophils were implicated in this process, the exact mechanism of tumor clearance and which immune effector cells were involved, remain to be defined. Consequently, experiments were undertaken to elucidate the mechanism of Th2-mediated destruction of B16-F1 melanoma cells by examining the in vitro antitumor activity of leukocytes within a type-2 inflammatory infiltrate. The experimental data show that activation of alternatively activated macrophages (aaMacs) within type-2 infiltrates by IL-4 or IL-13 can inhibit B16-F1 melanoma cell proliferation through a mechanism that is dependent on arginase-1 depletion of L-arginine within the tumor cell microenvironment. Interestingly, whilst at higher E:T ratios aaMac exhibited antitumor activity, at lower E:T ratios aaMacs were observed to enhance rather than inhibit B16-F1 melanoma cell growth. This highlights the fine balance between stimulating the antitumorigenic and protumorigenic properties of aaMacs in tumor immunotherapy protocols.


Microbes and Infection | 2008

Molecular and cellular mechanisms in the viral exacerbation of asthma

Sharyn Tauro; Yung-Chang Su; Sandra Thomas; Jürgen Schwarze; Klaus I. Matthaei; Dijana Townsend; Ljubov Simson; Ralph A. Tripp; Suresh Mahalingam

Abstract The aetiology of asthma associated with viral infection is complex. The dynamics that contribute to disease pathogenesis are multifactorial and involve overlapping molecular and cellular mechanisms, particularly the immune response to respiratory virus infection or allergen sensitization. This review summarizes the evidence associated with factors that may contribute to the development or exacerbation of asthma including age, host factors, genetic polymorphisms, altered immune responses, and aspects of viral antigen expression. This review also provides an important perspective of key events linked to the development of asthmatic disease and related pulmonary inflammation from human and animal studies, and discusses their relationship as targets for disease intervention strategies.


Journal of Virology | 2015

Dual Proinflammatory and Antiviral Properties of Pulmonary Eosinophils in Respiratory Syncytial Virus Vaccine-Enhanced Disease

Yung Chang Su; Dijana Townsend; Lara J. Herrero; Ali Zaid; Michael S. Rolph; Michelle E. Gahan; Michelle Nelson; Penny A. Rudd; Klaus I. Matthaei; Paul S. Foster; Lindsay A. Dent; Ralph A. Tripp; James J. Lee; Ljubov Simson; Suresh Mahalingam

ABSTRACT Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous studies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent airway eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) deficiency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were reduced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) responses. In contrast to wild-type mice, RSV was recovered at high titers from the lungs of eotaxin- and/or IL-5-deficient mice. Adoptive transfer of eosinophils to FI-RSV-immunized eotaxin- and IL-5-deficient (double-deficient) mice challenged with RSV was associated with potent viral clearance that was mediated at least partly through nitric oxide. These studies show that pulmonary eosinophilia has dual outcomes: one linked to RSV-induced airway inflammation and pulmonary pathology and one with innate features that contribute to a reduction in the viral load. IMPORTANCE This study is critical to understanding the mechanisms attributable to RSV vaccine-enhanced disease. This study addresses the hypothesis that IL-5 and eotaxin are critical in pulmonary eosinophil response related to FI-RSV vaccine-enhanced disease. The findings suggest that in addition to mediating tissue pathology, eosinophils within a Th2 environment also have antiviral activity.


Clinical and Experimental Pharmacology and Physiology | 1997

COMPETITION BY SECOND MESSENGER SYSTEMS FOR RECEPTOR INTERACTION AND ACTIVATION : IMPLICATIONS FOR TISSUE-SPECIFIC RESPONSES AND DISEASE THERAPY

Michael F. Crouch; Ian J. Frew; Ljubov Simson; Deborah A. Davy

1. At any one instant, most receptors are now recognized to be able to stimulate multiple signal transduction pathways in a cell when activated by an appropriate hormone. These different signalling pathways appear to allow for distinct cellular responses, such as cell proliferation, differentiation, and shape change.


Archive | 2010

The Role of Th2-Mediated Anti-Tumor Immunity in Tumor Surveillance and Clearance

Ljubov Simson; Julia I. Ellyard; Christopher R. Parish

The concept that the immune system has the potential to recognize tumor cells and either eliminate them (tumor immune surveillance) or select for immune-resistant variants (immunoediting) has gained a resurgence of interest by the scientific community in the last decade. To date, much of the research on the immune response to cancer has focused on the response of cytotoxic CD8+ T lymphocytes to tumor-specific antigens and the production of Th1 cytokines by CD4+ and CD8+ T cells. In contrast, Th2-mediated immunity has traditionally been viewed as enhancing tumor growth, both by promoting angiogenesis and by inhibiting cell-mediated immunity and subsequent tumor cell killing. Although components of Th2-mediated immunity have been shown to promote tumor growth, there is also an expanding body of evidence demonstrating the anti-tumor activity of CD4+ Th2 cells, particularly in collaboration with tumor-infiltrating granulocytes, such as eosinophils. In this chapter we examine all the key components of type 2 immunity and their effects on tumor growth. Based on this collective data, there exists great potential for the development of Th2-mediated immunotherapies that harness the anti-tumor activity of eosinophils, alternatively activated macrophages and the antigen–IgE–receptor axis.

Collaboration


Dive into the Ljubov Simson's collaboration.

Top Co-Authors

Avatar

Christopher R. Parish

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia I. Ellyard

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Klaus I. Matthaei

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael F. Crouch

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Marc E. Rothenberg

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Aulikki Koskinen

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Craig Freeman

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Dijana Townsend

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge