Lloyd C. L. Hollenberg
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lloyd C. L. Hollenberg.
Nature Nanotechnology | 2012
Martin Fuechsle; Jill A. Miwa; Suddhasatta Mahapatra; Hoon Ryu; Sunhee Lee; Oliver Warschkow; Lloyd C. L. Hollenberg; Gerhard Klimeck; M. Y. Simmons
Over the past decade we have developed a radical new strategy for the fabrication of atomic-scale devices in silicon [1]. Using this process we have demonstrated few electron, single crystal quantum dots [2], conducting nanoscale wires with widths down to ~1.5nm [3] and most recently a single atom transistor [4]. We will present atomic-scale images and electronic characteristics of these atomically precise devices and demonstrate the impact of strong vertical and lateral confinement on electron transport. We will also discuss the opportunities ahead for atomic-scale quantum computing architectures and some of the challenges to achieving truly atomically precise devices in all three spatial dimensions.
Nature Physics | 2011
Florian Dolde; Helmut Fedder; Marcus W. Doherty; Tobias Nöbauer; Florian Rempp; Gopalakrishnan Balasubramanian; Thomas Wolf; Friedemann Reinhard; Lloyd C. L. Hollenberg; Fedor Jelezko; Jörg Wrachtrup
The ability to sensitively detect charges under amb ient conditions would be a fascinating new tool benefitting a wide range of researchers ac ross disciplines. However, most current techniques are limited to low-temperature methods l ike single-electron transistors (SET)[1,2], single–electron electrostatic force microscopy[3] a nd scanning tunnelling microscopy [4]. Here we open up a new quantum metrology technique demons trating precision electric field measurement using a single nitrogen-vacancy defect entre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/ √Hz has been achieved. This corresponds to the electric field produced by a single elementary char ge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By caref ul analysis of the electronic structure of the defect centre, we show how an applied magnetic fiel d influences the electric field sensing properties. By this we demonstrate that diamond defct centre spins can be switched between electric and magnetic field sensing modes and ident ify suitable parameter ranges for both detector schemes. By combining magnetic and electri c field sensitivity, nanoscale detection and ambient operation our study opens up new frontiers in imaging and sensing applications ranging from material science to bioimaging.
Nature Nanotechnology | 2011
Liam P. McGuinness; Yan Yan; Alastair Stacey; David A. Simpson; Liam T. Hall; D. Maclaurin; Steven Prawer; Paul Mulvaney; Jörg Wrachtrup; Frank Caruso; R. E. Scholten; Lloyd C. L. Hollenberg
Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.
Reviews of Modern Physics | 2013
Floris A. Zwanenburg; Andrew S. Dzurak; Andrea Morello; M. Y. Simmons; Lloyd C. L. Hollenberg; Gerhard Klimeck; S. Rogge; S. N. Coppersmith; M. A. Eriksson
This review describes recent groundbreaking results in Si, Si/SiGe, and dopant-based quantum dots, and it highlights the remarkable advances in Si-based quantum physics that have occurred in the past few years. This progress has been possible thanks to materials development of Si quantum devices, and the physical understanding of quantum effects in silicon. Recent critical steps include the isolation of single electrons, the observation of spin blockade, and single-shot readout of individual electron spins in both dopants and gated quantum dots in Si. Each of these results has come with physics that was not anticipated from previous work in other material systems. These advances underline the significant progress toward the realization of spin quantum bits in a material with a long spin coherence time, crucial for quantum computation and spintronics.
Physical Review B | 2004
Lloyd C. L. Hollenberg; Andrew S. Dzurak; Cameron J. Wellard; A. R. Hamilton; D. J. Reilly; G. J. Milburn; R. G. Clark
Solid-state quantum computer architectures with qubits encoded using single atoms are now feasible given recent advances in the atomic doping of semiconductors. Here we present a charge qubit consisting of two dopant atoms in a semiconductor crystal, one of which is singly ionized. Surface electrodes control the qubit and a radio-frequency single-electron transistor provides fast readout. The calculated single gate times, of order 50 ps or less, are much shorter than the expected decoherence time. We propose universal one- and two-qubit gate operations for this system and discuss prospects for fabrication and scale up.
Science | 2012
Bent Weber; Suddhasatta Mahapatra; Hoon Ryu; Sunhee Lee; A. Fuhrer; Thorsten B. H. Reusch; Daniel L. Thompson; W.C.T. Lee; Gerhard Klimeck; Lloyd C. L. Hollenberg; M. Y. Simmons
Wiring Up Silicon Surfaces One of the challenges in downsizing electronic circuits is maintaining low resistivity of wires, because shrinking their diameter to near atomic dimensions increases interface effects and can decrease the effectiveness of dopants. Weber et al. (p. 64; see the Perspective by Ferry) created nanowires on a silicon surface with the deposition of phosphorus atoms through decomposition of PH3 with a scanning tunneling microscope tip. A brief thermal annealing embedded these nanowires, which varied from 1.5 to 11 nanometers in width, into the silicon surface. Their resistivity was independent of width, and their current-carrying capability was comparable to that of thicker copper interconnects. Nanowires created by embedding phosphorus atoms within silicon exhibit a low, diameter-independent resistivity. As silicon electronics approaches the atomic scale, interconnects and circuitry become comparable in size to the active device components. Maintaining low electrical resistivity at this scale is challenging because of the presence of confining surfaces and interfaces. We report on the fabrication of wires in silicon—only one atom tall and four atoms wide—with exceptionally low resistivity (~0.3 milliohm-centimeters) and the current-carrying capabilities of copper. By embedding phosphorus atoms within a silicon crystal with an average spacing of less than 1 nanometer, we achieved a diameter-independent resistivity, which demonstrates ohmic scaling to the atomic limit. Atomistic tight-binding calculations confirm the metallicity of these atomic-scale wires, which pave the way for single-atom device architectures for both classical and quantum information processing.
Physical Review B | 2006
Lloyd C. L. Hollenberg; Andrew D. Greentree; Austin G. Fowler; Cameron J. Wellard
Through the introduction of a new electron spin transport mechanism, a 2D donor electron spin quantum computer architecture is proposed. This design addresses major technical issues in the original Kane design, including spatial oscillations in the exchange coupling strength and cross-talk in gate control. It is also expected that the introduction of nonlocality in qubit interaction will significantly improve the scaling fault-tolerant threshold over the nearest-neighbor linear array.
Nature Communications | 2013
Steffen Steinert; Florestan Ziem; Liam T. Hall; Andrea Zappe; Michael Schweikert; N. Götz; A. Aird; Gopalakrishnan Balasubramanian; Lloyd C. L. Hollenberg; Jörg Wrachtrup
The detection of small numbers of magnetic spins is a significant challenge in the life, physical and chemical sciences, especially when room temperature operation is required. Here we show that a proximal nitrogen-vacancy spin ensemble serves as a high precision sensing and imaging array. Monitoring its longitudinal relaxation enables sensing of freely diffusing, unperturbed magnetic ions and molecules in a microfluidic device without applying external magnetic fields. Multiplexed charge-coupled device acquisition and an optimized detection scheme permits direct spin noise imaging of magnetically labelled cellular structures under ambient conditions. Within 20 s we achieve spatial resolutions below 500 nm and experimental sensitivities down to 1,000 statistically polarized spins, of which only 32 ions contribute to a net magnetization. The results mark a major step towards versatile sub-cellular magnetic imaging and real-time spin sensing under physiological conditions providing a minimally invasive tool to monitor ion channels or haemoglobin trafficking inside live cells.
Physical Review B | 2004
Andrew D. Greentree; Jared H. Cole; A. R. Hamilton; Lloyd C. L. Hollenberg
We describe a scheme for using an all-electrical, rapid, adiabatic population transfer between two spatially separated dots in a triple-quantum dot system. The electron spends no time in the middle dot and does not change its energy during the transfer process. Although a coherent population transfer method, this scheme may well prove useful in incoherent electronic computation (for example quantum-dot cellular automata) where it may provide a coherent advantage to an otherwise incoherent device. It can also be thought of as a limiting case of type II quantum computing, where sufficient coherence exists for a single gate operation, but not for the preservation of superpositions after the operation. We extend our analysis to the case of many intervening dots and address the issue of transporting quantum information through a multi-dot system.
Physical Review B | 2011
Boris Naydenov; Florian Dolde; Liam T. Hall; Chang Shin; Helmut Fedder; Lloyd C. L. Hollenberg; Fedor Jelezko; Jörg Wrachtrup
Here we report the increase of the coherence time T