Lloyd Willard
Kansas State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lloyd Willard.
Experimental Biology and Medicine | 2011
Ling Tang; Yunong Zhang; Yu Jiang; Lloyd Willard; Edlin Ortiz; Logan Wark; Denis M. Medeiros; Dingbo Lin
Hyperglycemia-linked oxidative stress and/or consequent endoplasmic reticulum (ER) stress are the causative factors of pathogenesis of diabetic retinopathy. Dietary bioactive components which mitigate oxidative stress may serve as potential chemopreventive agents to prevent or slow down the disease progression. Wolfberry is a traditional Asian fruit consumed for years to prevent aging eye diseases in Asian countries. Here we report that dietary wolfberry ameliorated mouse retinal abnormality at the early stage of type 2 diabetes in db/db mice. Male mice at six weeks of age were fed the control diet with or without 1% (kcal) wolfberry for eight weeks. Dietary wolfberry restored the thickness of the whole retina, in particular the inner nuclear layer and photoreceptor layer, and the integrity of the retinal pigment epithelia (RPE), and the ganglion cell number in db/db mice. Western blotting of whole retinal cell lysates revealed that addition of wolfberry lowered expression of ER stress biomarkers binding immunoglobulin protein (BiP), protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and caspase-12, and restored AMP-activated protein kinase (AMPK), thioredoxin, Mn superoxide dismutase (Mn SOD) and forkhead O transcription factor 3 α (FOXO3α) activities. To determine if our observations were due to the high contents of zeaxanthin and lutein in wolfberry, additional studies using these carotenoids were conducted. Using the human adult diploid RPE cell line ARPE-19, we demonstrated that both zeaxanthin and lutein could mimic the wolfberry preventive effect on activation of AMPK, thioredoxin, Mn SOD, FOXO3α activities, normalize cellular reactive oxygen species and attenuate ER stress in ARPE-19 cells exposed to a high glucose challenge. The zeaxanthin preventive effect was abolished by small interfering RNA knockdown of AMPKα. These results suggested that AMPK activation appeared to play a key role in upregulated expression of thioredoxin and Mn SOD, and mitigation of cellular oxidative stress and/or ER stress by wolfberry and zeaxanthin and/or lutein. Taken together, dietary wolfberry on retinal protection in diabetic mice is, at least partially, due to zeaxanthin and/or lutein.
Infection and Immunity | 2002
Sanjeevkumar Narayanan; George C. Stewart; M. M. Chengappa; Lloyd Willard; Wilma Shuman; Melinda J. Wilkerson; T. G. Nagaraja
ABSTRACT Fusobacterium necrophorum, a gram-negative, rod-shaped, anaerobic bacterium, is a primary or secondary etiological agent in a variety of necrotic, purulent infections in humans and animals. Its major virulence factor is leukotoxin, a high-molecular-weight secreted protein, primarily toxic to ruminant leukocytes. In this study, bovine peripheral blood leukocytes were exposed to various concentrations of immunoaffinity-purified leukotoxin and the cytotoxicity was analyzed by flow cytometry and scanning and transmission electron microscopy. At very low toxin concentrations, polymorphonuclear leukocytes (PMNs) showed activation, as indicated by translocation of primary and secondary granules to the periphery of the cytoplasm. Furthermore, these cells showed changes characteristic of apoptosis, including decreased cell size, organelle condensation, cytoplasmic membrane blebbing (zeiosis), and chromatin condensation and margination, and decrease in cellular DNA content. At moderately high concentrations of leukotoxin, bovine mononuclear cells were also induced to undergo programmed cell death. At very high concentrations, leukotoxin caused necrotic cell death of bovine peripheral leukocytes. The ability of F. necrophorum leukotoxin to modulate the host immune system by its toxicity, including cellular activation of PMNs and apoptosis-mediated killing of phagocytes and immune effector cells, represents a potentially important mechanism of its pathogenesis.
Biochemical and Biophysical Research Communications | 2009
Yunong Zhang; Adam Snider; Lloyd Willard; Dolores J. Takemoto; Dingbo Lin
Spinocerebellar ataxia type 14 (SCA14) is an autosomal, dominant neurodegenerative disorder caused by mutations in PKCgamma. The objective of this study was to determine effects of PKCgamma H101Y SCA14 mutation on Purkinje cells in the transgenic mouse. Results demonstrated that wild type PKCgamma-like Purkinje cell localization of HA-tagged PKCgamma H101Y mutant proteins, altered morphology and loss of Purkinje cells were observed in the PKCgamma H101Y SCA14 transgenic mouse at four weeks of age. Failure of stereotypical clasping responses in the hind limbs of transgenic mice was also observed. Further, PKCgamma H101Y SCA14 mutation caused lack of total cellular PKCgamma enzyme activity, loss of connexin 57 phosphorylation on serines, and activation of caspase-12 in the PKCgamma H101Y SCA14 transgenic mouse. Results clearly demonstrate a need for PKCgamma control of gap junctions for maintenance of Purkinje cells. This is the first transgenic mouse to our knowledge which models a human SCA14 mutation.
The Journal of Experimental Biology | 2006
Dingbo Lin; Micheal E. Barnett; Samuel Lobell; Daniel Madgwick; Denton Shanks; Lloyd Willard; Guido A. Zampighi; Dolores J. Takemoto
SUMMARY Cataracts, or lens opacities, are the leading cause of blindness worldwide. Cataracts increase with age and environmental insults, e.g. oxidative stress. Lens homeostasis depends on functional gap junctions. Knockout or missense mutations of lens gap junction proteins, Cx46 or Cx50, result in cataractogenesis in mice. We have previously demonstrated that protein kinase Cγ (PKCγ) regulates gap junctions in the lens epithelium and cortex. In the current study, we further determined whether PKCγ control of gap junctions protects the lens from cataractogenesis induced by oxidative stress in vitro, using PKCγ knockout and control mice as our models. The results demonstrate that PKCγ knockout lenses are normal at 2 days post-natal when compared to control. However, cell damage, but not obvious cataract, was observed in the lenses of 6-week-old PKCγ knockout mice, suggesting that the deletion of PKCγ causes lenses to be more susceptible to damage. Furthermore, in vitro incubation or lens oxidative stress treatment by H2O2 significantly induced lens opacification (cataract) in the PKCγ knockout mice when compared to controls. Biochemical and structural results also demonstrated that H2O2 activation of endogenous PKCγ resulted in phosphorylation of Cx50 and subsequent inhibition of gap junctions in the lenses of control mice, but not in the knockout. Deletion of PKCγ altered the arrangement of gap junctions on the cortical fiber cell surface, and completely abolished the inhibitory effect of H2O2 on lens gap junctions. Data suggest that activation of PKCγ is an important mechanism regulating the closure of the communicating pathway mediated by gap junction channels in lens fiber cells. The absence of this regulatory mechanism in the PKCγ knockout mice may cause those lenses to have increased susceptibility to oxidative damage.
PLOS ONE | 2014
Arathy D. S. Nair; Chuanmin Cheng; Deborah C. Jaworski; Lloyd Willard; Michael W. Sanderson; Roman R. Ganta
Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.
Archives of Ophthalmology | 2009
Vladimir V. Yevseyenkov; Satyabrata Das; Dingbo Lin; Lloyd Willard; Harriet J. Davidson; Ari Sitaramayya; Frank J. Giblin; L. Dang; Dolores J. Takemoto
OBJECTIVE To determine if loss of protein kinase Cgamma (PKCgamma) results in increased structural damage to the retina by hyperbaric oxygen (HBO), a treatment used for several ocular disorders. METHODS Six-week-old mice were exposed in vivo to 100% HBO 3 times a week for 8 weeks. Eyes were dissected, fixed, embedded in Epon, sectioned, stained with toluidine blue O, and examined by light microscopy. RESULTS The thicknesses of the inner nuclear and ganglion cell layers were increased. Destruction of the outer plexiform layer was observed in the retinas of the PKCgamma-knockout mice relative to control mice. Exposure to HBO caused significant degradation of the retina in knockout mice compared with control mice. Damage to the outer segments of the photoreceptor layer and ganglion cell layer was apparent in central retinas of HBO-treated knockout mice. CONCLUSIONS Protein kinase Cgamma-knockout mice had increased retinal sensitivity to HBO. Results demonstrate that PKCgamma protects retinas from HBO damage. CLINICAL RELEVANCE Care should be taken in treating patients with HBO, particularly if they have a genetic disease, such as spinocerebellar ataxia type 14, a condition in which the PKCgamma is mutated and nonfunctional.
Veterinary Microbiology | 1993
Sharon M. Gwaltney; Lloyd Willard; Richard D. Oberst
Eperythrozoon suis is an extracellular red blood cell parasite that causes icteroanemia and poor growth performance in feeder pigs and has been associated with anemias in baby pigs and reproductive failures in sows. At present, few efficient tests are available for the diagnosis and study of E. suis infection in swine. This report discusses how a recently developed recombinant DNA probe (KSU-2) specific to E. suis DNA was utilized in in situ DNA hybridizations that couple biotinylated TaqI digested products of KSU-2 DNA with an immunogold detection system allowing the visualization by transmission electron microscopy of the gold particles within eperythrozoon organisms. Specific labelling by the probe of eperythrozoon organisms demonstrated a pattern that changed with the various stages of the eperythrozoon life cycle.
Molecular Nutrition & Food Research | 2013
Huifeng Yu; Logan Wark; Hua Ji; Lloyd Willard; Yu Jaing; Jing Han; Hui He; Edlin Ortiz; Yunong Zhang; Denis M. Medeiros; Dingbo Lin
Experimental Eye Research | 2008
Michael Barnett; Dingbo Lin; Vladimir Akoyev; Lloyd Willard; Dolores J. Takemoto
Molecular Nutrition & Food Research | 2014
Dingbo Lin; Hui He; Hua Ji; Jordan Willis; Lloyd Willard; Yu Jiang; Denis M. Medeiros; Logan Wark; Jing Han; Yongzhang Liu; Bin Lu