Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lluis Quintana-Murci is active.

Publication


Featured researches published by Lluis Quintana-Murci.


Science | 2007

TLR3 Deficiency in Patients with Herpes Simplex Encephalitis

Shen-Ying Zhang; Emmanuelle Jouanguy; Sophie Ugolini; Asma Smahi; Gaelle Elain; Pedro Romero; David M. Segal; Vanessa Sancho-Shimizu; Lazaro Lorenzo; Anne Puel; Capucine Picard; Ariane Chapgier; Sabine Plancoulaine; Matthias Titeux; Céline Cognet; Horst von Bernuth; Cheng Lung Ku; Armanda Casrouge; Xin Xin Zhang; Luis B. Barreiro; Joshua N. Leonard; Claire Hamilton; Pierre Lebon; Bénédicte Héron; Louis Vallée; Lluis Quintana-Murci; Alain Hovnanian; Flore Rozenberg; Eric Vivier; Frédéric Geissmann

Some Toll and Toll-like receptors (TLRs) provide immunity to experimental infections in animal models, but their contribution to host defense in natural ecosystems is unknown. We report a dominant-negative TLR3 allele in otherwise healthy children with herpes simplex virus 1 (HSV-1) encephalitis. TLR3 is expressed in the central nervous system (CNS), where it is required to control HSV-1, which spreads from the epithelium to the CNS via cranial nerves. TLR3 is also expressed in epithelial and dendritic cells, which apparently use TLR3-independent pathways to prevent further dissemination of HSV-1 and to provide resistance to other pathogens in TLR3-deficient patients. Human TLR3 appears to be redundant in host defense to most microbes but is vital for natural immunity to HSV-1 in the CNS, which suggests that neurotropic viruses have contributed to the evolutionary maintenance of TLR3.


Nature Genetics | 2008

Natural selection has driven population differentiation in modern humans

Luis B. Barreiro; Guillaume Laval; Hélène Quach; Etienne Patin; Lluis Quintana-Murci

The considerable range of observed phenotypic variation in human populations may reflect, in part, distinctive processes of natural selection and adaptation to variable environmental conditions. Although recent genome-wide studies have identified candidate regions under selection, it is not yet clear how natural selection has shaped population differentiation. Here, we have analyzed the degree of population differentiation at 2.8 million Phase II HapMap single-nucleotide polymorphisms. We find that negative selection has globally reduced population differentiation at amino acid–altering mutations, particularly in disease-related genes. Conversely, positive selection has ensured the regional adaptation of human populations by increasing population differentiation in gene regions, primarily at nonsynonymous and 5′-UTR variants. Our analyses identify a fraction of loci that have contributed, and probably still contribute, to the morphological and disease-related phenotypic diversity of current human populations.


American Journal of Human Genetics | 2004

Where West Meets East: The Complex mtDNA Landscape of the Southwest and Central Asian Corridor

Lluis Quintana-Murci; Raphaëlle Chaix; R. Spencer Wells; Doron M. Behar; Hamid Sayar; Rosaria Scozzari; Chiara Rengo; Nadia Al-Zahery; Ornella Semino; A. Silvana Santachiara-Benerecetti; Alfredo Coppa; Qasim Ayub; Aisha Mohyuddin; Chris Tyler-Smith; S. Qasim Mehdi; Antonio Torroni; Ken McElreavey

The southwestern and Central Asian corridor has played a pivotal role in the history of humankind, witnessing numerous waves of migration of different peoples at different times. To evaluate the effects of these population movements on the current genetic landscape of the Iranian plateau, the Indus Valley, and Central Asia, we have analyzed 910 mitochondrial DNAs (mtDNAs) from 23 populations of the region. This study has allowed a refinement of the phylogenetic relationships of some lineages and the identification of new haplogroups in the southwestern and Central Asian mtDNA tree. Both lineage geographical distribution and spatial analysis of molecular variance showed that populations located west of the Indus Valley mainly harbor mtDNAs of western Eurasian origin, whereas those inhabiting the Indo-Gangetic region and Central Asia present substantial proportions of lineages that can be allocated to three different genetic components of western Eurasian, eastern Eurasian, and south Asian origin. In addition to the overall composite picture of lineage clusters of different origin, we observed a number of deep-rooting lineages, whose relative clustering and coalescent ages suggest an autochthonous origin in the southwestern Asian corridor during the Pleistocene. The comparison with Y-chromosome data revealed a highly complex genetic and demographic history of the region, which includes sexually asymmetrical mating patterns, founder effects, and female-specific traces of the East African slave trade.


American Journal of Human Genetics | 2008

The dawn of human matrilineal diversity.

Doron M. Behar; Richard Villems; Himla Soodyall; Jason Blue-Smith; Luísa Pereira; Ene Metspalu; Rosaria Scozzari; Heeran Makkan; Shay Tzur; David Comas; Jaume Bertranpetit; Lluis Quintana-Murci; Chris Tyler-Smith; R. Spencer Wells; Saharon Rosset

The quest to explain demographic history during the early part of human evolution has been limited because of the scarce paleoanthropological record from the Middle Stone Age. To shed light on the structure of the mitochondrial DNA (mtDNA) phylogeny at the dawn of Homo sapiens, we constructed a matrilineal tree composed of 624 complete mtDNA genomes from sub-Saharan Hg L lineages. We paid particular attention to the Khoi and San (Khoisan) people of South Africa because they are considered to be a unique relic of hunter-gatherer lifestyle and to carry paternal and maternal lineages belonging to the deepest clades known among modern humans. Both the tree phylogeny and coalescence calculations suggest that Khoisan matrilineal ancestry diverged from the rest of the human mtDNA pool 90,000-150,000 years before present (ybp) and that at least five additional, currently extant maternal lineages existed during this period in parallel. Furthermore, we estimate that a minimum of 40 other evolutionarily successful lineages flourished in sub-Saharan Africa during the period of modern human dispersal out of Africa approximately 60,000-70,000 ybp. Only much later, at the beginning of the Late Stone Age, about 40,000 ybp, did introgression of additional lineages occur into the Khoisan mtDNA pool. This process was further accelerated during the recent Bantu expansions. Our results suggest that the early settlement of humans in Africa was already matrilineally structured and involved small, separately evolving isolated populations.


Nature Reviews Genetics | 2010

From evolutionary genetics to human immunology: how selection shapes host defence genes.

Luis B. Barreiro; Lluis Quintana-Murci

Pathogens have always been a major cause of human mortality, so they impose strong selective pressure on the human genome. Data from population genetic studies, including genome-wide scans for selection, are providing important insights into how natural selection has shaped immunity and host defence genes in specific human populations and in the human species as a whole. These findings are helping to delineate genes that are important for host defence and to increase our understanding of how past selection has had an impact on disease susceptibility in modern populations. A tighter integration between population genetic studies and immunological phenotype studies is now necessary to reveal the mechanisms that have been crucial for our past and present survival against infection.


American Journal of Human Genetics | 2002

The fingerprint of phantom mutations in mitochondrial DNA data.

Hans-Jürgen Bandelt; Lluis Quintana-Murci; Antonio Salas; Vincent Macaulay

Phantom mutations are systematic artifacts generated in the course of the sequencing process itself. In sequenced mitochondrial DNA (mtDNA), they generate a hotspot pattern quite different from that of natural mutations in the cell. To identify the telltale patterns of a particular phantom mutation process, one first filters out the well-established frequent mutations (inferred from various data sets with additional coding region information). The filtered data are represented by their full (quasi-)median network, to visualize the character conflicts, which can be expressed numerically by the cube spectrum. Permutation tests are used to evaluate the overall phylogenetic content of the filtered data. Comparison with benchmark data sets helps to sort out suspicious data and to infer features and potential causes for the phantom mutation process. This approach, performed either in the lab or at the desk of a reviewer, will help to avoid errors that otherwise would go into print and could lead to erroneous evolutionary interpretations. The filtering procedure is illustrated with two mtDNA data sets that were severely affected by phantom mutations.


Annual Review of Immunology | 2011

Human TLRs and IL-1Rs in Host Defense: Natural Insights from Evolutionary, Epidemiological, and Clinical Genetics

Jean-Laurent Casanova; Laurent Abel; Lluis Quintana-Murci

Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) have TIR intracellular domains that engage two main signaling pathways, via the TIR-containing adaptors MyD88 (which is not used by TLR3) and TRIF (which is used only by TLR3 and TLR4). Extensive studies in inbred mice in various experimental settings have attributed key roles in immunity to TLR- and IL-1R-mediated responses, but what contribution do human TLRs and IL-1Rs actually make to host defense in the natural setting? Evolutionary genetic studies have shown that human intracellular TLRs have evolved under stronger purifying selection than surface-expressed TLRs, for which the frequency of missense and nonsense alleles is high in the general population. Epidemiological genetic studies have yet to provide convincing evidence of a major contribution of common variants of human TLRs, IL-1Rs, or their adaptors to host defense. Clinical genetic studies have revealed that rare mutations affecting the TLR3-TRIF pathway underlie herpes simplex virus encephalitis, whereas mutations in the TIR-MyD88 pathway underlie pyogenic bacterial diseases in childhood. A careful reconsideration of the contributions of TLRs and IL-1Rs to host defense in natura is required.


PLOS Genetics | 2009

Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense.

Luis B. Barreiro; Meriem Ben-Ali; Hélène Quach; Guillaume Laval; Etienne Patin; Joseph K. Pickrell; Christiane Bouchier; Magali Tichit; Olivier Neyrolles; Brigitte Gicquel; Judith R. Kidd; Kenneth K. Kidd; Alexandre Alcaïs; Josiane Ragimbeau; Sandra Pellegrini; Laurent Abel; Jean-Laurent Casanova; Lluis Quintana-Murci

Infectious diseases have been paramount among the threats to health and survival throughout human evolutionary history. Natural selection is therefore expected to act strongly on host defense genes, particularly on innate immunity genes whose products mediate the direct interaction between the host and the microbial environment. In insects and mammals, the Toll-like receptors (TLRs) appear to play a major role in initiating innate immune responses against microbes. In humans, however, it has been speculated that the set of TLRs could be redundant for protective immunity. We investigated how natural selection has acted upon human TLRs, as an approach to assess their level of biological redundancy. We sequenced the ten human TLRs in a panel of 158 individuals from various populations worldwide and found that the intracellular TLRs—activated by nucleic acids and particularly specialized in viral recognition—have evolved under strong purifying selection, indicating their essential non-redundant role in host survival. Conversely, the selective constraints on the TLRs expressed on the cell surface—activated by compounds other than nucleic acids—have been much more relaxed, with higher rates of damaging nonsynonymous and stop mutations tolerated, suggesting their higher redundancy. Finally, we tested whether TLRs have experienced spatially-varying selection in human populations and found that the region encompassing TLR10-TLR1-TLR6 has been the target of recent positive selection among non-Africans. Our findings indicate that the different TLRs differ in their immunological redundancy, reflecting their distinct contributions to host defense. The insights gained in this study foster new hypotheses to be tested in clinical and epidemiological genetics of infectious disease.


PLOS Medicine | 2009

Sexual inequality in tuberculosis.

Olivier Neyrolles; Lluis Quintana-Murci

Olivier Neyrolles and Lluis Quintana-Murci review the evidence on why tuberulosis notification is twice as high in men as in women in most countries.


PLOS Medicine | 2006

Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis.

Luis B. Barreiro; Olivier Neyrolles; C. Babb; Ludovic Tailleux; Hélène Quach; Ken McElreavey; Paul D. van Helden; Eileen G. Hoal; Brigitte Gicquel; Lluis Quintana-Murci

Background Tuberculosis, which is caused by Mycobacterium tuberculosis, remains one of the leading causes of mortality worldwide. The C-type lectin DC-SIGN is known to be the major M. tuberculosis receptor on human dendritic cells. We reasoned that if DC-SIGN interacts with M. tuberculosis, as well as with other pathogens, variation in this gene might have a broad range of influence in the pathogenesis of a number of infectious diseases, including tuberculosis. Methods and Findings We tested whether polymorphisms in CD209, the gene encoding DC-SIGN, are associated with susceptibility to tuberculosis through sequencing and genotyping analyses in a South African cohort. After exclusion of significant population stratification in our cohort, we observed an association between two CD209 promoter variants (−871G and −336A) and decreased risk of developing tuberculosis. By looking at the geographical distribution of these variants, we observed that their allelic combination is mainly confined to Eurasian populations. Conclusions Our observations suggest that the two −871G and −336A variants confer protection against tuberculosis. In addition, the geographic distribution of these two alleles, together with their phylogenetic status, suggest that they may have increased in frequency in non-African populations as a result of host genetic adaptation to a longer history of exposure to tuberculosis. Further characterization of the biological consequences of DC-SIGN variation in tuberculosis will be crucial to better appreciate the role of this lectin in interactions between the host immune system and the tubercle bacillus as well as other pathogens.

Collaboration


Dive into the Lluis Quintana-Murci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evelyne Heyer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Harmant

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Doron M. Behar

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge