Lluïsa Vilageliu
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lluïsa Vilageliu.
Movement Disorders | 2012
Núria Setó-Salvia; Javier Pagonabarraga; Henry Houlden; Berta Pascual-Sedano; Oriol Dols-Icardo; Arianna Tucci; Coro Paisán‐Ruiz; Antonia Campolongo; Sofía Antón-Aguirre; Inés Martín; Laia Muñoz; Enric Bufill; Lluïsa Vilageliu; Daniel Grinberg; Mónica Cozar; Rafael Blesa; Alberto Lleó; John Hardy; Jaime Kulisevsky; Jordi Clarimón
Mutations in the glucocerebrosidase gene are associated with Parkinsons disease and Lewy body dementia. However, whether these alterations have any effect on the clinical course of Parkinsons disease is not clear. The glucocerebrosidase coding region was fully sequenced in 225 Parkinsons disease patients, 17 pathologically confirmed Lewy body dementia patients, and 186 controls from Spain. Twenty‐two Parkinsons disease patients (9.8%) and 2 Lewy body dementia patients (11.8%) carried mutations in the glucocerebrosidase gene, compared with only 1 control (0.5%); P = .016 and P = .021 for Parkinsons disease and Lewy body dementia, respectively. The N370S and the L444P mutations represented 50% of the alterations. Two novel variants, L144V and S488T, and 7 previously described alterations were also found. Alterations in glucocerebrosidase were associated with a significant risk of dementia during the clinical course of Parkinsons disease (age at onset, years of evolution, and sex‐adjusted odds ratio, 5.8; P = .001). Mutation carriers did not show worse motor symptoms, had good response to L‐dopa, and tended to present the intermediate parkinsonian phenotype. Our findings suggest that mutations in the glucocerebrosidase gene not only increase the risk of both Parkinsons disease and Lewy body dementia but also strongly influence the course of Parkinsons disease with respect to the appearance of dementia.
Human Mutation | 1998
Bru Cormand; Daniel Grinberg; Laura Gort; Amparo Chabás; Lluïsa Vilageliu
Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the lysosomal β‐glucocerebrosidase (GBA) gene. As the disease is particularly prevalent among Ashkenazi Jews, most studies have been carried out on this ethnic group. In the current study, we present a mutation analysis of the GBA gene in Spanish patients together with the clinical findings. We conducted a systematic analysis in 53 unrelated GD patients. The GBA gene was initially scanned for nine previously described mutations by ASO hybridization or restriction analysis after PCR amplification. The remaining unidentified alleles were screened by nonisotopic PCR‐SSCP analysis and sequenced. This approach allowed the identification of 101 of 106 GD alleles (95.3%) involving 24 different mutations, 11 of which are described for the first time: G113E (455G→A), T134P (517A→C), G389E (1283G→A), P391L (1289C→T), N392I (1292A→T), Y412H (1351T→G), W(‐4)X (108G→A), Q169X (662C→T), R257X (886C→T), 500insT, and IVS5+1G→T. Most mutations are present in one or few GD chromosomes. However, two mutations, N370S (1226A→G) and L444P (1448T→C), are very frequent and account for 66.1% of the total number of alleles. Linkage disequilibrium was detected between these two mutations and an intragenic polymorphism, indicating that expansion of founder alleles occurred in both cases. Analysis of several microsatellite markers close to the GBA gene allowed us to establish the putative haplotype of the ancestral N370S chromosome. Hum Mutat 11:295–305, 1998.
Cell Reports | 2014
Meritxell Reverter; Carles Rentero; Ana García-Melero; Monira Hoque; Sandra Vilà de Muga; Anna Alvarez-Guaita; James R.W. Conway; Peta Wood; Rose Cairns; Lilia Lykopoulou; Daniel Grinberg; Lluïsa Vilageliu; Marta Bosch; Joerg Heeren; Juan Blasi; Paul Timpson; Albert Pol; Francesc Tebar; Rachael Z. Murray; Thomas Grewal; Carlos Enrich
Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.
Human Mutation | 2009
Laura Rodríguez-Pascau; Maria Josep Coll; Lluïsa Vilageliu; Daniel Grinberg
Niemann‐Pick type C disease is an autosomal recessive disorder caused by mutations in either the NPC1 or NPC2 gene. While most of the mutations are missense, a few splicing mutations have also been described. We identified and characterized a novel point mutation c.1554‐1009G>A located in intron 9 of the NPC1 gene in a Spanish patient. Sequencing of the cDNA from the patient showed that this intronic mutation creates a cryptic donor splice site resulting in the incorporation of 194 bp of intron 9 as a new exon (pseudoexon) in the mRNA. This new transcript bears a premature termination codon and is degraded by the nonsense‐mediated mRNA decay mechanism. Experimental confirmation that the point mutation generates the inclusion of a pseudoexon in the mRNA was obtained using a minigene. A specific antisense morpholino oligonucleotide targeted to the cryptic splice site was designed and transfected into fibroblasts from the patient. Using this approach, normal splicing was restored. These results demonstrate the importance of screening deep intronic regions and support the efficacy of antisense therapeutics for the treatment of diseases caused by pseudoexon‐generating mutations.
Blood Cells Molecules and Diseases | 2009
Gessamí Sánchez-Ollé; Joana Duque; Meritxell Egido-Gabás; Josefina Casas; Montserrat Lluch; Amparo Chabás; Daniel Grinberg; Lluïsa Vilageliu
Gaucher disease is an autosomal recessive disorder. It is characterized by the accumulation of glucosylceramide in lysosomes of mononuclear phagocyte system, attributable to acid beta-glucosidase deficiency. The main consequences of this disease are hepatosplenomegaly, skeletal lesions and, sometimes, neurological manifestations. At sub-inhibitory concentrations, several competitive inhibitors act as chemical chaperones by inducing protein stabilization and increasing enzymatic activity. Here we tested two iminosugars (NB-DNJ and NN-DNJ) and four aminocyclitols with distinct degrees of lipophilicity as pharmacological chaperones for glucocerebrosidase (GBA). We report an increase in the activity of GBA using NN-DNJ, NB-DNJ and aminocyclitol 1 in stably transfected cell lines, and an increment with NN-DNJ and aminocyclitol 4 in patient fibroblasts. These results on specific mutations validate the use of chemical chaperones as a therapeutic approach for Gaucher disease. However, the development and analysis of new compounds is required in order to find more effective therapeutic agents that are active on a broader range of mutations.
Human Mutation | 2009
Laura Rodríguez-Pascau; Laura Gort; Edward H. Schuchman; Lluïsa Vilageliu; Daniel Grinberg; Amparo Chabás
Niemann‐Pick disease (NPD) types A/B are both caused by a deficiency of lysosomal acid sphingomyelinase and display autosomal recessive inheritance. These two types of the disease were described according to the presence (type A) or absence (type B) of neurological symptoms. We present a molecular analysis of 19 Spanish NPD A/B patients and two from Maghreb. Eight of the patients had type A and 13 had type B NPD. All mutant SMPD1 alleles were identified, including 17 different mutations, 10 of which were novel. The only frequent mutations in the 21 NPD patients were c.1823_1825delGCC (p.R608del) (38%) and c.1445C>A (p.A482E) (9%). Genotype–phenotype correlations were established for most of the mutations and, in particular, the p.R608del‐type B association was confirmed. This mutation accounts for 61.5% of the mutant alleles in the type B subgroup of patients. Expression studies performed on six of the identified mutations confirmed them to be disease‐causing due to their low enzyme activity. An allele with a mutation affecting a noncanonical donor splice site produced only aberrant mRNAs, corresponding to previously reported nonfunctional SMPD1 minor transcripts. This study is the first exhaustive mutational analysis of Spanish Niemann‐Pick A/B disease patients. Hum Mutat 30:1–6, 2009.
Journal of Medical Genetics | 1998
Mònica Bayés; B Goldaracena; Amalia Martinez-Mir; M I Iragui-Madoz; T Solans; P Chivelet; Elena Bussaglia; M A Ramos-Arroyo; Montserrat Baiget; Lluïsa Vilageliu; S. Balcells; Roser Gonzàlez-Duarte; Daniel Grinberg
Autosomal recessive retinitis pigmentosa (ARRP) is a genetically heterogeneous disease. To date, mutations in four members of the phototransduction cascade have been implicated in ARRP. Additionally, linkage of the disease to three loci on 1p, 1q, and 6p has been described. However, the majority of cases are still uncharacterised. We have performed linkage analysis in a large nuclear ARRP family with five affected sibs. After exclusion of several regions of the genome known to contain loci for retinal dystrophies, a genomic search for linkage to ARRP was undertaken. Positive lod scores were obtained with markers on 2q31-q33 (Zmax at theta = 0.00 of 4.03, 4.12, and 4.12 at D2S364, D2S118, and D2S389, respectively) defining an interval of about 7 cM for this new ARRP locus, between D2S148 and D2S161. Forty-four out of 47 additional ARRP families, tested with markers on 2q32, failed to show linkage, providing evidence of further genetic heterogeneity.
Clinical Genetics | 2011
Judit Macías-Vidal; Laura Rodríguez-Pascau; G Sánchez‐Ollé; Montserrat Lluch; Lluïsa Vilageliu; Daniel Grinberg; Maria Josep Coll
Macías‐Vidal J, Rodríguez‐Pascau L, Sánchez‐Ollé G, Lluch M, Vilageliu L, Grinberg D, Coll MJ, the Spanish NPC Working Group. Molecular analysis of 30 Niemann–Pick type C patients from Spain.
Human Genetics | 2005
Anna Díaz-Font; Bru Cormand; Raül Santamaria; Lluïsa Vilageliu; Daniel Grinberg; Amparo Chabás
Only two Gaucher disease (GD) patients bearing mutations in the prosaposin gene (PSAP), and not in the glucocerebrosidase gene (GBA), have been reported. In both cases, one mutant allele remained unidentified. We report here the identification of the second mutation in one of these patients, being the first complete genotype described so far in a SAP-C-deficient GD patient. This mutation, p.Q430X, is the first one reported in the saposin D domain and probably produces a null allele by nonsense mediated mRNA decay.
Human Mutation | 1998
Magda Montfort; Lluïsa Vilageliu; Natalia Garcia-Giralt; Silvina Guidi; Maria Josep Coll; Amparo Chabás; Daniel Grinberg
The gene resposible for Sanfilippo syndrome type A, a lysosomal disorder caused by deficiency of sulfamidase, was recently cloned and more than 40 mutations were identified. This paper presents the mutation analysis and clinical findings in 11 Spanish patients in whom 19 of the 22 mutant alleles have been identified. This is the first report on mutations in Spanish Sanfilippo A patients. Seven different mutations were found, four of which (Q85R, R206P, A354P, and L386R) were not previously described. Mutation 1091del C was the most prevalent, accounting for nearly one‐half of the mutated alleles, while mutations R245H and R74C were not found. Haplotype analysis suggests a founder effect as the cause of the high frequency of 1091del C in this population. Hum Mutat 12:274–279, 1998.