Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loan Dang is active.

Publication


Featured researches published by Loan Dang.


Experimental Eye Research | 1995

Nuclear light scattering, disulfide formation and membrane damage in lenses of older guinea pigs treated with hyperbaric oxygen

Frank J. Giblin; Vanita A. Padgaonkar; Victor R. Leverenz; Li-Ren Lin; Marjorie F. Lou; Nalin J. Unakar; Loan Dang; Jaime E. Dickerson; Venkat N. Reddy

Nuclear cataract, a major cause of loss of lens transparency in the aging human, has long been thought to be associated with oxidative damage, particularly at the site of the nuclear plasma membrane. However, few animal models have been available to study the mechanism of the opacity. Hyperbaric oxygen (HBO) has been shown to produce increased nuclear light scattering (NLS) and nuclear cataract in lenses of mice and human patients. In the present study, older guinea pigs (Initially 17-18 months of age) were treated with 2.5 atmospheres of 100% O2 for 2-2.5-hr periods, three times per week, for up to 100 times. Examination by slit-lamp biomicroscopy showed that exposure to HBO led to increased NLS in the lenses of the animals after as few as 19 treatments, compared to lenses of age-matched untreated and hyperbaric air-treated controls. The degree of NLS and enlargement of the lens nucleus continued to increase until 65 O2-treatments, and then remained constant until the end of the study. Exposure to O2 for 2.5 instead of 2 hr accelerated the increase in NLS; however, distinct nuclear cataract was not observed in the animals during the period of investigation. A number of morphological changes in the experimental lens nuclei, as analysed by transmission electron microscopy, were similar to those recently reported for human immature nuclear cataracts (Costello, Oliver and Cobo, 1992). O2-induced damage to membranes probably acted as scattering centers and caused the observed increased NLS. A general state of oxidative stress existed in the lens nucleus of the O2-treated animals, prior to the first appearance of increased NLS, as evidenced by increased levels of protein-thiol mixed disulfides and protein disulfide. The levels of mixed disulfides in the experimental nucleus were remarkably high, nearly equal to the normal level of nuclear GSH. The level of GSH in the normal guinea pig lens decreased with age in the nucleus but not in the cortex; at 30 months of age the nuclear level of GSH was only 4% of the cortical value. HBO-induced changes in the lens nucleus included loss of soluble protein, increase in urea-insoluble protein and slight decreases in levels of GSH and ascorbate; however, there was no accumulation of oxidized glutathione. Intermolecular protein disulfide in the experimental nucleus consisted mainly of gamma-crystallin, but crosslinked alpha-, beta- and zeta-crystallins were also present.(ABSTRACT TRUNCATED AT 400 WORDS)


Retina-the Journal of Retinal and Vitreous Diseases | 2007

Microplasmin-induced Posterior Vitreous Detachment Affects Vitreous Oxygen Levels

Polly A. Quiram; Victor R. Leverenz; Robert M. Baker; Loan Dang; Frauk J. Giblin; Michael T. Trese

Purpose: To determine if enzymatic induction of a posterior vitreous detachment (PVD) and/or vitreous liquefaction affects O2 concentration in the vitreous cavity in animals with vascularized and avascular retinal circulations. Methods: Either microplasmin or hyaluronidase was injected intravitreally into guinea pigs (avascular retinal circulation), brown Norway rats (vascularized retinal circulation without fovea), or cats (vascularized retinal circulation with fovea) with the contralateral eye used as a control. One to 2 weeks post injection, vitreal oxygen concentration was measured using a highly sensitive, platinum-based fluorophore O2 sensor. In addition, control and microplasmin-injected rats, guinea pigs, and cats were exposed to 100% oxygen and vitreal O2 levels were measured over time. Scanning electron microscopy (SEM) was used to evaluate the vitreoretinal interface for the presence of a PVD. Results: In animals with a vascularized retinal circulation (brown Norway rats and cats), intravitreal injection of microplasmin with induction of a PVD significantly increased baseline O2 concentration in the vitreous cavity compared to hyaluronidase injected eyes and controls in rats (35, 25, and 23 mm Hg, P < 0.001 and P < 0.001, respectively) and cats (26, 18, and 16 mm Hg, P < 0.01 and P < 0.001, respectively). Interestingly, intravitreal injection of hyaluronidase (vitreous liquefaction without induction of a PVD) did not significantly increase vitreal O2 levels in any of the animal species (P > 0.1). Upon exposure to 100% oxygen by facemask, microplasmin injected animals showed a rapid increase in vitreal oxygen levels compared to hyaluronidase injected animals and controls, indicating that the presence of a PVD allows rapid O2 exchange within the vitreous cavity. Similarly, once O2 was discontinued, the O2 concentration decreased in a similarly rapid rate. SEM showed smooth retinal surfaces in microplasmin-injected cat eyes, indicating the presence of a PVD which was not present in hyaluronidase injected or control eyes. Conclusion: The results suggest that enzymatic-assisted PVD with microplasmin increases vitreal O2 levels and increases the rate of O2 exchange within the vitreous cavity.


Ophthalmologica | 1997

Peroxide-Induced Damage in Lenses of Transgenic Mice with Deficient and Elevated Levels of Glutathione Peroxidase

V.N. Reddy; Li-Ren Lin; Ye-Shih Ho; J.-L. Magnenat; Nobuhiro Ibaraki; Frank J. Giblin; Loan Dang

Transgenic mice with elevated glutathione peroxidase (GSHPx) activity and gene knockout animals with a deficiency of the enzyme were used to investigate the role of GSHPx in defending the lens against H2O2-induced damage. The effects of peroxide on cultured lenses were determined by using light and transmission electron microscopy to evaluate morphological changes occurring in the epithelium and superficial cortex of the central and equatorial regions of the lens. DNA single-strand breaks in the epithelium were also examined. Following a 30-min exposure to 25 microM H2O2, lenses from normal animals showed distinct changes in the morphology of both the epithelium and superficial cortex. The damage to these cells was extensive in lenses of gene knockout mice in which activity of GSHPx was undetectable. In marked contrast, lenses of transgenic mice, which had 5-fold higher activities of GSHPx, were able to resist the cytotoxic effects. Similar to damage to cell morphology, the extent of DNA strand breaks was significantly lower (40% of control) in H2O2-exposed lenses as compared to normal lenses while DNA damage in gene knockout lenses was 5 times greater than that of GSHPx-rich transgenic lenses. The present studies extend our previous findings on the role of the glutathione redox cycle in the detoxification of peroxide and demonstrate that an increase in GSHPx activity protects the lens against peroxide-induced changes in cell morphology and DNA strand breaks.


Experimental Eye Research | 2009

Enzyme-induced posterior vitreous detachment in the rat produces increased lens nuclear pO2 levels.

Frank J. Giblin; P. A. Quiram; Victor R. Leverenz; R.M. Baker; Loan Dang; Michael T. Trese

It has been proposed that disruption of normal vitreous humor may permit O(2) to travel more easily from the retina to the center of the lens where it may cause nuclear cataract (Barbazetto, I.A., Liang, J., Chang, S., Zheng, L., Spector, A., Dillon, J.P., 2004. Oxygen tension in the rabbit lens and vitreous before and after vitrectomy. Exp. Eye Res. 78, 917-924; Harocopos, G.J., Shui, Y.B., McKinnon, M., Holekamp, N.M., Gordon, M.O., Beebe, D.C., 2004. Importance of vitreous liquefaction in age-related cataract. Invest. Ophthalmol. Vis. Sci. 45, 77-85). In the present study, we injected enzymes intravitreally into guinea pigs (which possess an avascular retina) and rats (which possess a vascular retina) to produce either vitreous humor liquefaction plus a posterior vitreous detachment (PVD) (with use of microplasmin) or vitreous humor liquefaction only (with use of hyaluronidase), and 1-2 weeks later measured lens nuclear pO(2) levels in vivo using a platinum-based fluorophore O(2) sensor (Oxford-Optronix, Ltd.). Experiments were also conducted in which the animals were allowed to breathe 100% O(2) following intravitreal injection with either microplasmin or hyaluronidase in order to investigate possible effects on O(2) exchange within the eye. Injection of guinea pigs with either of the two enzymes produced no significant differences in lens pO(2) levels 1-2 weeks later, compared to controls. However, for the rat, injection of microplasmin produced a 68% increase in O(2) level in the center of the lens, compared to the controls (5.6mm Hg increasing to 9.4mm Hg, p<0.05), with no corresponding effect observed following similar use of hyaluronidase. Treatment of guinea pigs with microplasmin dramatically accelerated movement of O(2) across the vitreal space when the animals were later allowed to breathe 100% O(2) (for example, O(2) traveled to a location directly behind the lens 5x faster than control; p<0.01); however, the effect following treatment with hyaluronidase was significantly less. When microplasmin-injected rats breathed 100% O(2), the time required for O(2) to reach the center of the lens was 3x faster than control (0.4 min compared to 1.4 min, p<0.01). The results have implication with regard to the occurrence of age-related PVD in the human, and a possible acceleration of maturity-onset nuclear cataract. In addition, enzymatic creation of a PVD to increase the rate of O(2) exchange within the vitreal space may have potential application for treatment of retinal ischemic disease.


Visual Neuroscience | 1995

Nitric oxide synthesis in retinal photoreceptor cells

Akiko Yoshida; Nikolay Pozdnyakov; Loan Dang; Stephen M. Orselli; Venkat N. Reddy; Ari Sitaramayya

Nitric oxide (NO) is known to be synthesized in several tissues and to increase the formation of cyclic GMP through the activation of soluble guanylate cyclases. Since cyclic GMP plays an important role in visual transduction, we investigated the presence of nitric oxide synthesizing activity in retinal rod outer segments. Bovine rod outer segments were isolated intact and separated into membrane and cytosolic fractions. Nitric oxide synthase activity was assayed by measuring the conversion of L-arginine to L-citrulline. Both membrane and cytosolic fractions were active in the presence of calcium and calmodulin. The activity in both fractions was stimulated by the nitric oxide synthase cofactors FAD, FMN, and tetrahydrobiopterin and inhibited by the L-arginine analog, L-monomethyl arginine. The Km for L-arginine was similar, about 5 microM for the enzyme in both fractions. However, the two fractions differed in their calcium/calmodulin dependence: the membrane fraction exhibited basal activity even in the absence of added calcium and calmodulin while the cytosolic fraction was inactive. But the activity increased in both fractions when supplemented with calcium/calmodulin: in membranes from about 40 to 110 fmol/min/mg of protein and in the cytosol from near zero to about 350 fmol/min/mg of protein in assays carried out at 0.3 microM L-arginine. The two enzymes also responded differently to detergent: the activity of the membrane enzyme was doubled by Triton X-100 while that of the cytosolic enzyme was unaffected. These results show that NO is produced by cytosolic and membrane-associated enzymes with distinguishable properties.(ABSTRACT TRUNCATED AT 250 WORDS)


Investigative Ophthalmology & Visual Science | 2011

A Class I (Senofilcon A) Soft Contact Lens Prevents UVB-Induced Ocular Effects, Including Cataract, in the Rabbit In Vivo

Frank J. Giblin; Li-Ren Lin; Victor R. Leverenz; Loan Dang

PURPOSE UVB radiation from sunlight is known to be a risk factor for human cataract. The purpose in this study was to investigate the ability of a class I UV-blocking soft contact lens to protect against UVB-induced effects on the ocular tissues of the rabbit in vivo. METHODS Eyes of rabbits were exposed to UVB light for 30 minutes (270-360 nm, peak at 310 nm, 1.7 mW/cm(2) on the cornea). Eyes were irradiated in the presence of either a UV-blocking senofilcon A contact lens, a minimally UV-blocking lotrafilcon A contact lens, or no contact lens at all. Effects on the cornea and lens were evaluated at various times after exposure. RESULTS Eyes irradiated with no contact lens protection showed corneal epithelial cell loss plus lens epithelial cell swelling, vacuole formation, and DNA single-strand breaks, as well as lens anterior subcapsular opacification. The senofilcon A lens protected nearly completely against the UVB-induced effects, whereas the lotrafilcon A lens showed no protection. CONCLUSIONS The results indicate that use of a senofilcon A contact lens is beneficial in protecting ocular tissues of the rabbit against the harmful effects of UVB light, including photokeratitis and cataract.


Investigative Ophthalmology & Visual Science | 2008

Selective Degeneration of Central Photoreceptors after Hyperbaric Oxygen in Normal and Metallothionein-Knockout Mice

Michele Nachman-Clewner; Frank J. Giblin; C. Kathleen Dorey; Robert H. I. Blanks; Loan Dang; Christopher J. Dougherty; Janet C. Blanks

PURPOSE Metallothioneins (MTs) in the brain and retina are believed to bind metals and reduce free radicals, thereby protecting neurons from oxidative damage. This study was undertaken to investigate whether retinal photoreceptor (PR) cells lacking MTs are more susceptible to hyperbaric oxygen (HBO)-induced cell death in vivo. METHODS Wild-type (WT) and MT-knockout (MT-KO) mice lacking metallothionein (MT)-1 and MT-2 were exposed to three atmospheres of 100% oxygen for 3 hours, 3 times per week for 1, 3, or 5 weeks. The control animals were not exposed. Histologic analysis of PR viability was performed by counting rows of nuclei in the outer nuclear layer (ONL). Ultrastructure studies verified PR damage. RESULTS HBO exposure produced a major loss of PR cells in the central retinas of WT and MT-KO mice, with no effect on the peripheral retina even at the longest (5 weeks) exposures. The degree of PR damage and cell death increased with duration of HBO exposure. One week of HBO exposure was insufficient to cause PR death, but tissue damage was observed in the inner and outer segments. At 3 weeks, the rows of PR nuclei in the central retina were significantly reduced by 38% in WT and 28% in MT-KO animals. At 5 weeks, PR loss was identical in WT (34%) and MT-KO (34%) animals and was comparable to that in WT at 3 weeks. CONCLUSIONS The data suggest that MT-1 and -2 alone are not sufficient for protecting PRs against HBO-induced cell death. The selective degeneration of central PRs may provide clues to mechanisms of oxidative damage in retinal disease.


Visual Neuroscience | 1998

Soluble guanylate cyclase and nitric oxide synthase in synaptosomal fractions of bovine retina.

Alexander Margulis; Nikolay Pozdnyakov; Loan Dang; Ari Sitaramayya

Cyclic GMP has been shown in recent years to directly activate ion channels in bipolar and ganglion cells, and to indirectly regulate coupling between horizontal cells, and between bipolar and amacrine cells. In all of these cases, the effects of cyclic GMP are mimicked by nitric oxide. An increase in calcium concentration stimulates the production of nitric oxide by neuronal and endothelial forms of nitric oxide synthase, which in turn activates soluble guanylate cyclases, enhancing the synthesis of cyclic GMP. Though some effects of nitric oxide do not involve cyclic GMP, the nitric oxide-cyclic GMP cascade is well recognized as a signaling mechanism in brain and other tissues. The widespread occurrence of nitric oxide/cyclic GMP-regulated ion channel activity in retinal neurons raises the possibility that nitric-oxide-sensitive soluble guanylate cyclases play an important role in cell-cell communication, and possibly, synaptic transmission. Immunohistochemical studies have indicated the presence of soluble guanylate cyclase in retinal synaptic layers, but such studies are not suitable for determination of the density or quantitative subcellular distribution of the enzyme. Microanalytical methods involving microdissection of frozen retina also showed the presence of cyclase activity in retinal plexiform layers but these methods did not permit distinction between nitric oxide-sensitive and insensitive cyclases. In this study, we fractionated retinal homogenate into the cytosolic and synaptosomal fractions and investigated the specific activity and distribution of soluble guanylate cyclase and nitric oxide synthase. The results show that both enzymes are present in the synaptosomal fractions derived from inner and outer plexiform layers. The synaptosomal fraction derived from inner retina was highly enriched in cyclase activity. Nitric oxide synthase activity was also higher in the inner than outer retinal synaptosomal fraction. The results suggest that the nitric oxide-cyclic GMP system is operational in both synaptic layers of retina and that it may play a more significant role in the inner retina.


Retina-the Journal of Retinal and Vitreous Diseases | 2012

A novel quadraport needle with improved intravitreal drug dispersion.

Tetsu Asami; S. Chien Wong; Patrick C. Mitchell; Clayton C. Tokunaga; Y. Chen; Loan Dang; Frank J. Giblin; Michael T. Trese

Autologous plasmin enzyme has been shown to induce clinically relevant vitreous liquefaction and induce posterior vitreous detachment (PVD) through degradation of the vitreoretinal juncture and stimulation of collagenase activity. Microplasmin (ThromboGenics Co, Ltd., NV, Leuven, Belgium) is a truncated recombinant form of plasmin enzyme lacking kringle sites and has been shown to be efficacious in recent phase II, multicenter, randomized, controlled, clinical trials. It is our hypothesis that the technique of intravitreal delivery and dispersion of these enzymatic medications may affect clinical efficacy. We describe a novel technique of drug delivery within the vitreous cavity.


Investigative Ophthalmology & Visual Science | 2001

Glutathione Peroxidase-1 Deficiency Leads to Increased Nuclear Light Scattering, Membrane Damage, and Cataract Formation in Gene-Knockout Mice

Venkat N. Reddy; Frank J. Giblin; Li-Ren Lin; Loan Dang; Nalin J. Unakar; David C. Musch; Daniel L. Boyle; L. Takemoto; Ye-Shih Ho; Tina Knoernschild; Anselm Juenemann; Elke Lütjen–Drecoll

Collaboration


Dive into the Loan Dang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li-Ren Lin

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge