Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Locksley E. McGann is active.

Publication


Featured researches published by Locksley E. McGann.


Biophysical Journal | 1994

The osmotic rupture hypothesis of intracellular freezing injury.

Ken Muldrew; Locksley E. McGann

A hypothesis of the nature of intracellular ice formation is proposed in which the osmotically driven water efflux that occurs in cells during freezing (caused by the increased osmotic pressure of the extracellular solution in the presence of ice) is viewed as the agent responsible for producing a rupture of the plasma membrane, thus allowing extracellular ice to propagate into the cytoplasm. This hypothesis is developed into a mathematical framework and the forces that are present during freezing are compared to the forces which are required to rupture membranes in circumstances unrelated to low temperatures. The theory is then applied to systems which have been previously studied to test implications of the theory on the nature of intracellular ice formation. The pressure that develops during freezing due to water flux is found to be sufficient to cause a rupture of the plasma membrane and the theory gives an accurate description of the phenomenology of intracellular ice formation.


Cryobiology | 1978

Differing actions of penetrating and nonpenetrating cryoprotective agents.

Locksley E. McGann

Abstract A two-step freezing technique has been used to examine the role of cryoprotective agents during cooling. Chinese hamster fibroblasts were cooled to various subzero holding temperatures and subsequently thawed or cooled to −196 °C before thawing. Cells were suspended in various concentrations of dimethylsulfoxide (DMSO) or hydroxyethyl starch (HES) before freezing. The results indicated differing protective actions of DMSO and HES. These differences were verified using glycerol as either a penetrating or a nonpenetrating agent. The results are consistent with the concepts that cryoprotection is based on the avoidance or minimization of intracellular freezing and the minimization of damage to the cell from the environment of concentrated solutes during cooling, and that the colligative action of both penetrating and nonpenetrating agents allows the cells to survive the conditions for a reduction of cell water content during cooling thereby reducing the amount of intracellular freezing. The results indicate that penetrating and nonpenetrating agents accomplish this in different ways. Penetrating agents create the environment for a reduction of cell water content at temperatures sufficiently low to reduce the damaging effect of the concentrated solutes on the cells. Nonpenetrating agents osmotically “squeeze” water from the cells primarily during the initial phases of freezing at temperatures between −10 and −20 °C when these additives become concentrated in the extracellular regions.


Biophysical Journal | 2001

Intercellular ice propagation: experimental evidence for ice growth through membrane pores.

Jason P. Acker; Janet A.W. Elliott; Locksley E. McGann

Propagation of intracellular ice between cells significantly increases the prevalence of intracellular ice in confluent monolayers and tissues. It has been proposed that gap junctions facilitate ice propagation between cells. This study develops an equation for capillary freezing-point depression to determine the effect of temperature on the equilibrium radius of an ice crystal sufficiently small to grow through gap junctions. Convection cryomicroscopy and video image analysis were used to examine the incidence and pattern of intracellular ice formation (IIF) in the confluent monolayers of cell lines that do (MDCK) and do not (V-79W) form gap junctions. The effect of gap junctions on intracellular ice propagation was strongly temperature-dependent. For cells with gap junctions, IIF occurred in a directed wave-like pattern in 100% of the cells below -3 degrees C. At temperatures above -3 degrees C, there was a marked drop in the incidence of IIF, with isolated individual cells initially freezing randomly throughout the sample. This random pattern of IIF was also observed in the V-79W monolayers and in MDCK monolayers treated to prevent gap junction formation. The significant change in the low temperature behavior of confluent MDCK monolayers at -3 degrees C is likely the result of the inhibition of gap junction-facilitated ice propagation, and supports the theory that gap junctions facilitate ice nucleation between cells.


Cryobiology | 2015

Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects.

Leah A. Marquez-Curtis; Anna Janowska-Wieczorek; Locksley E. McGann; Janet A.W. Elliott

Originally isolated from bone marrow, mesenchymal stromal cells (MSCs) have since been obtained from various fetal and post-natal tissues and are the focus of an increasing number of clinical trials. Because of their tremendous potential for cellular therapy, regenerative medicine and tissue engineering, it is desirable to cryopreserve and bank MSCs to increase their access and availability. A remarkable amount of research and resources have been expended towards optimizing the protocols, freezing media composition, cooling devices and storage containers, as well as developing good manufacturing practices in order to ensure that MSCs retain their therapeutic characteristics following cryopreservation and that they are safe for clinical use. Here, we first present an overview of the identification of MSCs, their tissue sources and the properties that render them suitable as a cellular therapeutic. Next, we discuss the responses of cells during freezing and focus on the traditional and novel approaches used to cryopreserve MSCs. We conclude that viable MSCs from diverse tissues can be recovered after cryopreservation using a variety of freezing protocols, cryoprotectants, storage periods and temperatures. However, alterations in certain functions of MSCs following cryopreservation warrant future investigations on the recovery of cells post-thaw followed by expansion of functional cells in order to achieve their full therapeutic potential.


Human Immunology | 1982

Monoclonal antibodies against human granulocytes and myeloid differentiation antigens

Patrice Mannoni; Anna Janowska-Wieczorek; A. Robert Turner; Locksley E. McGann; Jean-Michael Turc

Monoclonal antibodies (MCA) were obtained by immunizing BALB/c mice with 99% pure granulocytes from normal donors or with a whole leukocyte suspension obtained from a chronic myelogenous leukemia (CML) patient, and then fusing the mouse spleen cells with a 315-43 myeloma cell clone. Four MCA were selected and studied using ELISA, immunofluorescence, cytotoxicity assays, and FACS analysis. Antibodies 80H.1, 80H.3, and 80H.5 (from normals) and 81H.1 (from CML) detected antigens expressed on neutrophils. Antibodies 80H.1 and 80H.3 (IgG) also reacted with monocytes but not with other blood cell subsets. Antibodies 80H.5 and 81H.1 (IgM) were cytotoxic and reacted strongly with most of the cells of the neutrophil maturation sequence, i.e., myeloblasts, promyelocytes, myelocytes, and mature granulocytes. Antibodies 80H.5 and 81H.1 also inhibited CFU-GM growth stimulated by leukocyte feeder layers or placental conditioned media, but did not inhibit BFU-E and CFU-E. Antigens recognized by 80H.3, 80H.5, and 81H.1 were expressed both on a proportion of cells from HL.60, KG.1, ML.1, and K562 myeloid cell lines, and on a proportion of blast cells isolated from patients with acute myelogenous leukemia. They were not found on lymphoid cell lines or lymphoid leukemia cells. These MCA recognize either late differentiation antigens expressed on mature neutrophils and monocytes (80H.1 and 80H.3) or early differentiation antigens (80H.5 and 81H.1) specific to the granulocytic lineage. They may be useful for a better definition of those antigens specific to hematopoietic stem cells and their relationship with normal or neoplastic hematopoiesis.


Cell Transplantation | 1998

In situ assessment of cell viability

Hongyou Yang; Jason P. Acker; Austin Chen; Locksley E. McGann

Cryobiological studies of tissues often require the simultaneous assessment of tissue structure and in situ cellular function. Localization of damage during cryopreservation occurs as a consequence of tissue structure and morphology and as a result of biophysical constraints imposed by diffusion and heat transfer. This study used five experimental model tissue systems: cells in suspension, cells attached to a substrate, a monolayer of cells attached to a substrate, porcine corneas, and intact porcine articular cartilage to examine the efficacy of assessing cell recovery using a novel fluorescent stain (SYTO-13). A graded freezing protocol was used to induce varying degrees of tissue damage. Recovery was assessed in the different tissue model systems using SYTO with ethidium bromide, fluorescein diacetate (FDA) with ethidium bromide, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). In each of the tissue model systems, the SYTO/EB assessment technique was shown to be equally effective as the existing techniques for the determination of cell recovery. In addition, the properties of fluorescence intensity and rate of release for SYTO were significantly better than those obtained using FDA. Assessment of in situ cell viability was clearly demonstrated using porcine corneas and articular cartilage. The SYTO/EB assay is superior to the existing techniques used for the localization of cell damage in tissues after cryopreservation.


Cryobiology | 1988

Manifestations of cell damage after freezing and thawing

Locksley E. McGann; Hongyou Yang; Michele Walterson

The nature of the primary lesions suffered by cells during freezing and thawing is unclear, although the plasma membrane is often considered the primary site for freezing injury. This study was designed to investigate the nature of damage immediately after thawing, by monitoring several functional tests of the cell and the plasma membrane. Hamster fibroblasts, human lymphocytes, and human granulocytes were subjected to a graded freeze-thaw stress in the absence of cryoprotective compound by cooling at -1 degree C/min to a temperature between -10 and -40 degrees C, and then were either warmed directly in water at 37 degrees C or cooled rapidly to -196 degrees C before rapid warming. Mitochondrial function in the cells was then assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT), fluorescein diacetate (FDA), colony growth, and osmometric response in a hypertonic solution. Cells behaved as osmometers after cooling at -1 degree C/min to low temperatures at which there were no responses measured by other assays, indicating that the plasma membrane is not a primary site for injury sustained during slow cooling. These results also indicate that the FDA test does not measure membrane integrity, but reflects the permeability of the channels through which fluorescein leaves the cells. Fewer cells could respond osmotically after cooling under conditions where intracellular freezing was likely, implying that the plasma membrane is directly damaged by the conditions leading to intracellular freezing. A general model of freezing injury to nucleated mammalian cells is proposed in which disruption of the lysosomes constitutes the primary lesion in cells cooled under conditions where the cells are dehydrated at low temperatures.


Cryobiology | 2013

Cryopreservation of articular cartilage

Nadr M. Jomha; Locksley E. McGann; Janet Anne Wade Elliott; Garson K. Law; Fraser Forbes; Alireza Abazari Torgabeh; Babak Maghdoori; A.D. Weiss

Cryopreservation has numerous practical applications in medicine, biotechnology, agriculture, forestry, aquaculture and biodiversity conservation, with huge potentials for biological cell and tissue banking. A specific tissue of interest for cryopreservation is the articular cartilage of the human knee joint for two major reasons: (1) clinically, there exists an untapped potential for cryopreserved cartilage to be used in surgical repair/reconstruction/replacement of injured joints because of the limited availability of fresh donor tissue and, (2) scientifically, successful cryopreservation of cartilage, an avascular tissue with only one cell type, is considered a stepping stone for transition from biobanking cell suspensions and small tissue slices to larger and more complicated tissues. For more than 50years, a great deal of effort has been directed toward understanding and overcoming the challenges of cartilage preservation. In this article, we focus mainly on studies that led to the finding that vitrification is an appropriate approach toward successful preservation of cartilage. This is followed by a review of the studies on the main challenges of vitrification, i.e. toxicity and diffusion, and the novel approaches to overcome these challenges such as liquidus tracking, diffusion modeling, and cryoprotective agent cocktails, which have resulted in the recent advancements in the field.


Journal of Orthopaedic Research | 2002

Cryopreservation of intact human articular cartilage

Nadr M. Jomha; G. Lavoie; Ken Muldrew; Norman S. Schachar; Locksley E. McGann

Damaged articular cartilage (AC) impairs joint function and many treatment techniques are being investigated to determine their long term results. Successful cryopreservation of AC can provide a reliable source of intact matrix with viable chondrocytes to maintain the cartilage over long periods of time. This study investigated the application of an established cryopreservation protocol to determine the recovery of intact chondrocytes from human AC. Ten millimeter diameter osteochondral dowels were harvested from two human donors. The cryopreservation protocol was performed and the samples were rapidly warmed from varying experimental holding temperatures (−10, −20, −30, −40°C), with and without plunging into liquid nitrogen, using 1 M dimethyl sulfoxide as cryoprotectant. The cartilage was stained with membrane integrity dyes and viewed under fluorescence microscopy. The percent of intact chondrocytes was compared to fresh controls. Low recovery of intact chondrocytes was recorded from all temperature levels with and without cryoprotectant. The results of this experiment demonstrated that the cryopreservation procedure used to achieve moderate success with intact sheep AC was not successful with intact human AC and further investigation is required.


Biophysical Journal | 2009

Osmotic Transport across Cell Membranes in Nondilute Solutions: A New Nondilute Solute Transport Equation

Heidi Y. Elmoazzen; Janet A.W. Elliott; Locksley E. McGann

The fundamental physical mechanisms of water and solute transport across cell membranes have long been studied in the field of cell membrane biophysics. Cryobiology is a discipline that requires an understanding of osmotic transport across cell membranes under nondilute solution conditions, yet many of the currently-used transport formalisms make limiting dilute solution assumptions. While dilute solution assumptions are often appropriate under physiological conditions, they are rarely appropriate in cryobiology. The first objective of this article is to review commonly-used transport equations, and the explicit and implicit assumptions made when using the two-parameter and the Kedem-Katchalsky formalisms. The second objective of this article is to describe a set of transport equations that do not make the previous dilute solution or near-equilibrium assumptions. Specifically, a new nondilute solute transport equation is presented. Such nondilute equations are applicable to many fields including cryobiology where dilute solution conditions are not often met. An illustrative example is provided. Utilizing suitable transport equations that fit for two permeability coefficients, fits were as good as with the previous three-parameter model (which includes the reflection coefficient, sigma). There is less unexpected concentration dependence with the nondilute transport equations, suggesting that some of the unexpected concentration dependence of permeability is due to the use of inappropriate transport equations.

Collaboration


Dive into the Locksley E. McGann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge