Loes E. M. Kistemaker
University of Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Loes E. M. Kistemaker.
Life Sciences | 2012
Loes E. M. Kistemaker; Tjitske A. Oenema; Herman Meurs; Reinoud Gosens
Acetylcholine is the primary parasympathetic neurotransmitter in the airways and an autocrine/paracrine secreted hormone from non-neuronal origins including inflammatory cells and airway structural cells. In addition to the well-known functions of acetylcholine in regulating bronchoconstriction and mucus secretion, it is increasingly evident that acetylcholine regulates inflammatory cell chemotaxis and activation, and also participates in signaling events leading to chronic airway wall remodeling that is associated with chronic obstructive airway diseases including asthma and COPD. As muscarinic receptors appear responsible for most of the pro-inflammatory and remodeling effects of acetylcholine, these findings have significant implications for anticholinergic therapy in asthma and COPD, which is selective for muscarinic receptors. Here, the regulatory role of acetylcholine in inflammation and remodeling in asthma and COPD will be discussed including the perspectives that these findings offer for anticholinergic therapy in these diseases.
Trends in Pharmacological Sciences | 2015
Loes E. M. Kistemaker; Reinoud Gosens
Acetylcholine is the primary parasympathetic neurotransmitter in the airways, where it not only induces bronchoconstriction and mucus secretion, but also regulates airway inflammation and remodeling. In this review, we propose that these effects are all primarily mediated via the muscarinic M3 receptor. Acetylcholine promotes inflammation and remodeling via direct effects on airway cells, and via mechanical stress applied to the airways sequential to bronchoconstriction. The effects on inflammation and remodeling are regulated by both neuronal and non-neuronal acetylcholine. Taken together, we believe that the combined effects of anticholinergic therapy on M3-mediated bronchoconstriction, mucus secretion, inflammation, and remodeling may account for the positive outcome of treatment with these drugs for patients with chronic pulmonary obstructive disease (COPD) or asthma.
Current Opinion in Pharmacology | 2013
Herman Meurs; Tjitske A. Oenema; Loes E. M. Kistemaker; Reinoud Gosens
Acetylcholine has traditionally only been regarded as a neurotransmitter of the parasympathetic nervous system, causing bronchoconstriction and mucus secretion in asthma and COPD by muscarinic receptor activation on airway smooth muscle and mucus-producing cells. Recent studies in experimental models indicate that muscarinic receptor stimulation in the airways also induces pro-inflammatory, pro-proliferative and pro-fibrotic effects, which may involve activation of airway structural and inflammatory cells by neuronal as well as non-neuronal acetylcholine. In addition, mechanical changes caused by muscarinic agonist-induced bronchoconstriction may be involved in airway remodeling. Crosstalk between muscarinic receptors and β2-adrenoceptors on airway smooth muscle causes a reduced bronchodilator response to β2-agonists, and a similar mechanism could possibly apply to the poor inhibition of inflammatory and remodeling processes by these drugs. Collectively, these findings provide novel perspectives for muscarinic receptor antagonists in asthma and COPD, since these drugs may not only acutely affect cholinergic airways obstruction, but also have important beneficial effects on β2-agonist responsiveness, airway inflammation and remodeling. The clinical relevance of these findings is presently under investigation and starting to emerge.
American Journal of Respiratory Cell and Molecular Biology | 2014
Loes E. M. Kistemaker; Sophie Bos; Willemieke M. Mudde; Machteld N. Hylkema; Pieter S. Hiemstra; Juergen Wess; Herman Meurs; Huib Kerstjens; Reinoud Gosens
Asthma is a chronic obstructive airway disease, characterized by inflammation and remodeling. Acetylcholine contributes to symptoms by inducing bronchoconstriction via the muscarinic M3 receptor. Recent evidence suggests that bronchoconstriction can regulate airway remodeling, and therefore implies a role for the muscarinic M3 receptor. The objective of this work was to study the contribution of the muscarinic M3 receptor to allergen-induced remodeling using muscarinic M3 receptor subtype-deficient (M3R(-/-)) mice. Wild-type (WT), M1R(-/-), and M2R(-/-) mice were used as controls. C57Bl/6 mice were sensitized and challenged with ovalbumin (twice weekly for 4 wk). Control animals were challenged with saline. Allergen exposure induced goblet cell metaplasia, airway smooth muscle thickening (1.7-fold), pulmonary vascular smooth muscle remodeling (1.5-fold), and deposition of collagen I (1.7-fold) and fibronectin (1.6-fold) in the airway wall of WT mice. These effects were absent or markedly lower in M3R(-/-) mice (30-100%), whereas M1R(-/-) and M2R(-/-) mice responded similarly to WT mice. In addition, airway smooth muscle and pulmonary vascular smooth muscle mass were 35-40% lower in saline-challenged M3R(-/-) mice compared with WT mice. Interestingly, allergen-induced airway inflammation, assessed as infiltrated eosinophils and T helper type 2 cytokine expression, was similar or even enhanced in M3R(-/-) mice. Our data indicate that acetylcholine contributes to allergen-induced remodeling and smooth muscle mass via the muscarinic M3 receptor, and not via M1 or M2 receptors. No stimulatory role for muscarinic M3 receptors in allergic inflammation was observed, suggesting that the role of acetylcholine in remodeling is independent of the allergic inflammatory response, and may involve bronchoconstriction.
Pulmonary Pharmacology & Therapeutics | 2014
Peter B. Noble; Chris D. Pascoe; Bo Lan; Satoru Ito; Loes E. M. Kistemaker; Amanda L. Tatler; Tonio Pera; Bindi S. Brook; Reinoud Gosens; Adrian R. West
Asthma is an obstructive airway disease, with a heterogeneous and multifactorial pathogenesis. Although generally considered to be a disease principally driven by chronic inflammation, it is becoming increasingly recognised that the immune component of the pathology poorly correlates with the clinical symptoms of asthma, thus highlighting a potentially central role for non-immune cells. In this context airway smooth muscle (ASM) may be a key player, as it comprises a significant proportion of the airway wall and is the ultimate effector of acute airway narrowing. Historically, the contribution of ASM to asthma pathogenesis has been contentious, yet emerging evidence suggests that ASM contractile activation imparts chronic effects that extend well beyond the temporary effects of bronchoconstriction. In this review article we describe the effects that ASM contraction, in combination with cellular mechanotransduction and novel contraction-inflammation synergies, contribute to asthma pathogenesis. Specific emphasis will be placed on the effects that ASM contraction exerts on the mechanical properties of the airway wall, as well as novel mechanisms by which ASM contraction may contribute to more established features of asthma such as airway wall remodelling.
European Respiratory Journal | 2013
Loes E. M. Kistemaker; Isabella Bos; Machteld N. Hylkema; Martijn C. Nawijn; Pieter S. Hiemstra; Juergen Wess; Herman Meurs; Huib Kerstjens; Reinoud Gosens
Cholinergic tone contributes to airflow obstruction in chronic obstructive pulmonary disease. Accordingly, anticholinergics are effective bronchodilators by blocking the muscarinic M3 receptor on airway smooth muscle. Recent evidence indicates that acetylcholine also contributes to airway inflammation. However, which muscarinic receptor subtype(s) regulates this process is unknown. In this study, the contribution of the M1, M2 and M3 receptor subtypes to cigarette smoke-induced airway inflammation was investigated by exposing muscarinic receptor subtype deficient mice to cigarette smoke for 4 days. In wild-type mice, cigarette smoke induced an increase in macrophages, neutrophils and lymphocytes in bronchoalveolar lavage fluid. Neutrophilic inflammation was higher in M1-/- and M2-/- mice compared to wild-type mice, but lower in M3-/- mice. Accordingly, the release of keratinocyte-derived chemokine (KC), monocyte chemotactic protein-1 and interleukin-6 was higher in M1-/- and M2-/- mice, and reduced in M3-/- mice. Markers of remodelling were not increased after cigarette smoke exposure. However, M3-/- mice had reduced expression of transforming growth factor-&bgr;1 and matrix proteins. Cigarette smoke-induced inflammatory cell recruitment and KC release were also prevented by the M3-receptor selective antagonist 1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) in wild-type mice. Collectively, our data indicate a pro-inflammatory role for the M3 receptor in cigarette smoke-induced neutrophilia and cytokine release, yet an anti-inflammatory role for M1 and M2 receptors. Inhibition of the muscarinic M3 receptor prevents inflammation in response to cigarette smoke exposure in mice http://ow.ly/p7UdG
Thorax | 2015
Loes E. M. Kistemaker; Pieter S. Hiemstra; I. Sophie T. Bos; Susanne Bouwman; Maarten van den Berge; Machteld N. Hylkema; Herman Meurs; Huib Kerstjens; Reinoud Gosens
Background It has been shown that acetylcholine is both a neurotransmitter and acts as a local mediator, produced by airway cells including epithelial cells. In vivo studies have demonstrated an indirect role for acetylcholine in epithelial cell differentiation. Here, we aimed to investigate direct effects of endogenous non-neuronal acetylcholine on epithelial cell differentiation. Methods Human airway epithelial cells from healthy donors were cultured at an air–liquid interface (ALI). Cells were exposed to the muscarinic antagonist tiotropium (10 nM), interleukin (IL)-13 (1, 2 and 5 ng/mL), or a combination of IL-13 and tiotropium, during or after differentiation at the ALI. Results Human airway epithelial cells expressed all components of the non-neuronal cholinergic system, suggesting acetylcholine production. Tiotropium had no effects on epithelial cell differentiation after air exposure. Differentiation into goblet cells was barely induced after air exposure. Therefore, IL-13 (1 ng/mL) was used to induce goblet cell metaplasia. IL-13 induced MUC5AC-positive cells (5-fold) and goblet cells (14-fold), as assessed by histochemistry, and MUC5AC gene expression (105-fold). These effects were partly prevented by tiotropium (47–92%). Goblet cell metaplasia was induced by IL-13 in a dose-dependent manner, which was inhibited by tiotropium. In addition, tiotropium reversed goblet cell metaplasia induced by 2 weeks of IL-13 exposure. IL-13 decreased forkhead box protein A2 (FoxA2) expression (1.6-fold) and increased FoxA3 (3.6-fold) and SAM-pointed domain-containing ETS transcription factor (SPDEF) (5.2-fold) expression. Tiotropium prevented the effects on FoxA2 and FoxA3, but not on SPDEF. Conclusions We demonstrate that tiotropium has no effects on epithelial cell differentiation after air exposure, but inhibits and reverses IL-13-induced goblet cell metaplasia, possibly via FoxA2 and FoxA3. This indicates that non-neuronal acetylcholine contributes to goblet cell differentiation by a direct effect on epithelial cells.
Biochemical Pharmacology | 2016
Niek G.J. Leus; Petra E. van der Wouden; Thea van den Bosch; Wouter T.R. Hooghiemstra; Maria E. Ourailidou; Loes E. M. Kistemaker; Rainer Bischoff; Reinoud Gosens; Hidde J. Haisma; Frank J. Dekker
Graphical abstract
Scientific Reports | 2017
Niek G.J. Leus; Thea van den Bosch; Petra E. van der Wouden; Kim Krist; Maria E. Ourailidou; Nikolaos Eleftheriadis; Loes E. M. Kistemaker; Sophie Bos; Rutger A. F. Gjaltema; Solomon A. Mekonnen; Rainer Bischoff; Reinoud Gosens; Hidde J. Haisma; Frank J. Dekker
Chronic obstructive pulmonary disease (COPD) constitutes a major health burden. Studying underlying molecular mechanisms could lead to new therapeutic targets. Macrophages are orchestrators of COPD, by releasing pro-inflammatory cytokines. This process relies on transcription factors such as NF-κB, among others. NF-κB is regulated by lysine acetylation; a post-translational modification installed by histone acetyltransferases and removed by histone deacetylases (HDACs). We hypothesized that small molecule HDAC inhibitors (HDACi) targeting class I HDACs members that can regulate NF-κB could attenuate inflammatory responses in COPD via modulation of the NF-κB signaling output. MS-275 is an isoform-selective inhibitor of HDAC1-3. In precision-cut lung slices and RAW264.7 macrophages, MS-275 upregulated the expression of both pro- and anti-inflammatory genes, implying mixed effects. Interestingly, anti-inflammatory IL10 expression was upregulated in these model systems. In the macrophages, this was associated with increased NF-κB activity, acetylation, nuclear translocation, and binding to the IL10 promoter. Importantly, in an in vivo model of cigarette smoke-exposed C57Bl/6 mice, MS-275 robustly attenuated inflammatory expression of KC and neutrophil influx in the lungs. This study highlights for the first time the potential of isoform-selective HDACi for the treatment of inflammatory lung diseases like COPD.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2015
Loes E. M. Kistemaker; Ronald van Os; Albertina Dethmers-Ausema; I. Sophie T. Bos; Machteld N. Hylkema; Maarten van den Berge; Pieter S. Hiemstra; Jürgen Wess; Herman Meurs; Huib Kerstjens; Reinoud Gosens
Anticholinergics, blocking the muscarinic M3 receptor, are effective bronchodilators for patients with chronic obstructive pulmonary disease. Recent evidence from M(3) receptor-deficient mice (M(3)R(-/-)) indicates that M3 receptors also regulate neutrophilic inflammation in response to cigarette smoke (CS). M(3) receptors are present on almost all cell types, and in this study we investigated the relative contribution of M(3) receptors on structural cells vs. inflammatory cells to CS-induced inflammation using bone marrow chimeric mice. Bone marrow chimeras (C56Bl/6 mice) were generated, and engraftment was confirmed after 10 wk. Thereafter, irradiated and nonirradiated control animals were exposed to CS or fresh air for four consecutive days. CS induced a significant increase in neutrophil numbers in nonirradiated and irradiated control animals (4- to 35-fold). Interestingly, wild-type animals receiving M(3)R(-/-) bone marrow showed a similar increase in neutrophil number (15-fold). In contrast, no increase in the number of neutrophils was observed in M3R(-/-) animals receiving wild-type bone marrow. The increase in keratinocyte-derived chemokine (KC) levels was similar in all smoke-exposed groups (2.5- to 5.0-fold). Microarray analysis revealed that fibrinogen-α and CD177, both involved in neutrophil migration, were downregulated in CS-exposed M(3)R(-/-) animals receiving wild-type bone marrow compared with CS-exposed wild-type animals, which was confirmed by RT-qPCR (1.6-2.5 fold). These findings indicate that the M(3) receptor on structural cells plays a proinflammatory role in CS-induced neutrophilic inflammation, whereas the M(3) receptor on inflammatory cells does not. This effect is probably not mediated via KC release, but may involve altered adhesion and transmigration of neutrophils via fibrinogen-α and CD177.