Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loïc Pellissier is active.

Publication


Featured researches published by Loïc Pellissier.


Biological Reviews | 2012

Ecological assembly rules in plant communities-approaches, patterns and prospects

Lars Götzenberger; Francesco de Bello; Kari Anne Bråthen; John Davison; Anne Dubuis; Antoine Guisan; Jan Lepš; Regina Lindborg; Mari Moora; Meelis Pärtel; Loïc Pellissier; Julien Pottier; Pascal Vittoz; Kristjan Zobel; Martin Zobel

Understanding how communities of living organisms assemble has been a central question in ecology since the early days of the discipline. Disentangling the different processes involved in community assembly is not only interesting in itself but also crucial for an understanding of how communities will behave under future environmental scenarios. The traditional concept of assembly rules reflects the notion that species do not co‐occur randomly but are restricted in their co‐occurrence by interspecific competition. This concept can be redefined in a more general framework where the co‐occurrence of species is a product of chance, historical patterns of speciation and migration, dispersal, abiotic environmental factors, and biotic interactions, with none of these processes being mutually exclusive.


Science | 2014

Quaternary coral reef refugia preserved fish diversity

Loïc Pellissier; Fabien Leprieur; Valeriano Parravicini; Peter F. Cowman; Michel Kulbicki; Glenn Litsios; Steffen M. Olsen; Mary S. Wisz; David R. Bellwood; David Mouillot

Ancient reefs provided fishy refuges Climate fluctuations have occurred repeatedly in Earths history, and so there is much to be learned from examining the responses of past systems. Pellessier et al. reconstructed paleoenvironments over the past 3 million years from sediment cores collected across coral reef systems to explore the impacts of past conditions on reef fish diversity. Coral reefs survived in the Indo-Australian regions during times of otherwise extensive habitat loss. These robust reefs can explain much of the diversity found in present-day reef fish species. Science, this issue p. 1016 Ancient reefs protected fish from past climate changes, contributing to highly diverse fish in Indo-Australian reefs today. The most prominent pattern in global marine biogeography is the biodiversity peak in the Indo-Australian Archipelago. Yet the processes that underpin this pattern are still actively debated. By reconstructing global marine paleoenvironments over the past 3 million years on the basis of sediment cores, we assessed the extent to which Quaternary climate fluctuations can explain global variation in current reef fish richness. Comparing global historical coral reef habitat availability with the present-day distribution of 6316 reef fish species, we find that distance from stable coral reef habitats during historical periods of habitat loss explains 62% of the variation in fish richness, outweighing present-day environmental factors. Our results highlight the importance of habitat persistence during periods of climate change for preserving marine biodiversity.


Molecular Ecology | 2014

Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps

Loïc Pellissier; Hélène Niculita-Hirzel; Anne Dubuis; Marco Pagni; Nicolas Guex; Charlotte Ndiribe; Nicolas Salamin; Ioannis Xenarios; Jérôme Goudet; Ian R. Sanders; Antoine Guisan

Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below‐ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km2). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity–area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine‐scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage‐specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.


Progress in Physical Geography | 2014

Very high resolution environmental predictors in species distribution models: Moving beyond topography?

Jean-Nicolas Pradervand; Anne Dubuis; Loïc Pellissier; Antoine Guisan; Christophe F. Randin

Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species’ micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions – and therefore local management – compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.


Biological Invasions | 2016

Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation

Aníbal Pauchard; Ann Milbau; Ann Albihn; Jake M. Alexander; T. Burgess; Curtis C. Daehler; Göran Englund; Franz Essl; Birgitta Evengård; Gregory Greenwood; Sylvia Haider; Jonathan Lenoir; Keith L. McDougall; Erin Muths; Martin A. Nuñez; Johan Olofsson; Loïc Pellissier; Wolfgang Rabitsch; Lisa J. Rew; Mark P. Robertson; Nathan J. Sanders; Christoph Kueffer

Abstract Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high latitude with climate change, (2) review existing knowledge about invasion risks in these areas, and (3) encourage more research on how species will move and interact in cold environments, the consequences for biodiversity, and animal and human health and wellbeing. The diversity of potential and actual invaders reported at the workshop and the likely interactions between them create major challenges for managers of cold environments. However, since these cold environments have experienced fewer invasions when compared with many warmer, more populated environments, prevention has a real chance of success, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources.


Journal of Ecology | 2014

Incorporating dominant species as proxies for biotic interactions strengthens plant community models

Peter C. le Roux; Loïc Pellissier; Mary S. Wisz; Miska Luoto

Summary 1. Biotic interactions exert considerable influence on the distribution of individual species and should, thus, strongly impact communities. Implementing biotic interactions in spatial models of community assembly is therefore essential for accurately modelling assemblage properties. However, this remains a challenge due to the difficulty of detecting the role of species interactions and because accurate paired community and environment data sets are required to disentangle biotic influences from abiotic effects. 2. Here, we incorporate data from three dominant species into community-level models as a proxy for the frequency and intensity of their interactions with other species and predict emergent assemblage properties for the co-occurring subdominant species. By analysing plant community and fieldquantified environmental data from specially designed and spatially replicated monitoring grids, we provide a robust in vivo test of community models. 3. Considering this well-defined and easily quantified surrogate for biotic interactions consistently improved realism in all aspects of community models (community composition, species richness and functional structure), irrespective of modelling methodology. 4. Dominant species reduced community richness locally and favoured species with similar leaf dry matter content. This effect was most pronounced under conditions of high plant biomass and cover, where stronger competitive impacts are expected. Analysis of leaf dry matter content suggests that this effect may occur through efficient resource sequestration. 5. Synthesis. We demonstrate the strong role of dominant species in shaping multiple plant community attributes, and thus the need to explicitly include interspecific interactions to achieve robust predictions of assemblage properties. Incorporating information on biotic interactions strengthens our capacity not only to predict the richness and composition of communities, but also how their structure and function will be modified in the face of global change.


Nature Communications | 2016

Plate tectonics drive tropical reef biodiversity dynamics

Fabien Leprieur; Patrice Descombes; Théo Gaboriau; Peter F. Cowman; Valeriano Parravicini; Michel Kulbicki; Carlos J. Melián; Charles N. de Santana; Christian Heine; David Mouillot; David R. Bellwood; Loïc Pellissier

The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.


Global Change Biology | 2015

Forecasted coral reef decline in marine biodiversity hotspots under climate change

Patrice Descombes; Mary S. Wisz; Fabien Leprieur; Valerianio Parravicini; Christian Heine; Steffen M. Olsen; Didier Swingedouw; Michel Kulbicki; David Mouillot; Loïc Pellissier

Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low-latitude climatic conditions have no present-day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo-Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change.


Climate Change Responses | 2014

Functional homogenization of bumblebee communities in alpine landscapes under projected climate change

Jean-Nicolas Pradervand; Loïc Pellissier; Christophe F. Randin; Antoine Guisan

BackgroundBumblebees represent an active pollinator group in mountain regions and assure the pollination of many different plant species from low to high elevations. Plant-pollinator interactions are mediated by functional traits. Shift in bumblebee functional structure under climate change may impact plant-pollinator interactions in mountains. Here, we estimated bumblebee upward shift in elevation, community turnover, and change in functional structure under climate change.MethodWe sampled bumblebee species at 149 sites along the elevation gradient. We used stacked species distribution models (S-SDMs) forecasted under three climate change scenarios (A2, A1B, RCP3PD) to model the potential distribution of the Bombus species. Furthermore, we used species proboscis length measurements to assess the functional change in bumblebee assemblages along the elevation gradient.ResultsWe found species-specific response of bumblebee species to climate change. Species differed in their predicted rate of range contraction and expansion. Losers were mainly species currently restricted to high elevation. Under the most severe climate change scenarios (A2), we found a homogenization of proboscis length structure in bumblebee communities along the elevation gradient through the upward colonization of high elevation by species with longer proboscides.ConclusionsHere, we show that in addition to causing the shift in the distribution of bumblebee species, climate change may impact the functional structure of communities. The colonization of high elevation areas by bumblebee species with long proboscides may modify the structure of plant-pollination interaction networks by increasing the diversity of pollination services at high elevation.


Journal of Ecology | 2016

The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation

Loïc Pellissier; Xoaquín Moreira; Holger Danner; Martha Serrano; Nicolas Salamin; Nicole M. van Dam; Sergio Rasmann

Ecological theory indicates that warmer and more stable climates should result in stronger biotic interactions. Therefore, plant species growing at lower elevations and experiencing greater herbivore pressure should invest in higher levels of defences than those at higher elevations. Nonetheless, there are a number of studies that have found no effect of elevational gradients on plant defensive traits. Several factors might explain the lack of consistency for the altitude-defence relationships, including (i) the reduction of all defensive traits into one measure of resistance; (ii) not considering plant defence as the simultaneous expression of several defensive traits; and (iii) not considering the relative influence of biotic (e.g. herbivory) and abiotic (e.g. climate and soil conditions) factors associated with the ecological gradient. Here, we present a comprehensive test of the effects of elevation and its associated biotic and abiotic factors on the individual and simultaneous expression of constitutive direct and indirect defences and their inducibility (i.e. expression of defences after herbivore attack). Specifically, we estimated climatic and soil variables and measured herbivore damage and constitutive and jasmonic acid-induced glucosinolate levels in the leaves as a proxy for direct defences, and volatile emission as a proxy for indirect defences in 16 Cardamine species naturally growing along the steep elevational gradient of the Alps. Within a phylogenetic comparative framework, we found that species growing at lower elevations invested more in the simultaneous inducibility of both direct and indirect defences, whereas species growing at higher elevations invested more in constitutive direct defences. Although we found strong elevational gradients in herbivory and climatic and soil variables, these biotic and abiotic factors only partially explained elevational patterns in plant defences.Synthesis. These results highlight that the complex regulation of multiple defence traits strongly vary across elevational gradients and build towards a better understanding of the multiple mechanisms underlying trait evolution and species interactions along ecological gradients.

Collaboration


Dive into the Loïc Pellissier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Dubuis

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Julien Pottier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadir Alvarez

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steffen M. Olsen

Danish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Sergio Rasmann

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge