Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lois L. Cavanagh is active.

Publication


Featured researches published by Lois L. Cavanagh.


Nature | 2003

Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells.

J. Rodrigo Mora; María Rosa Bono; N. Manjunath; Wolfgang Weninger; Lois L. Cavanagh; Mario Rosemblatt; Ulrich H. von Andrian

Whereas naive T cells migrate only to secondary lymphoid organs, activation by antigen confers to T cells the ability to home to non-lymphoid sites. Activated effector/memory T cells migrate preferentially to tissues that are connected to the secondary lymphoid organs where antigen was first encountered. Thus, oral antigens induce effector/memory cells that express essential receptors for intestinal homing, namely the integrin α4β7 and CCR9, the receptor for the gut-associated chemokine TECK/CCL25 (refs 6, 8, 9). Here we show that this imprinting of gut tropism is mediated by dendritic cells from Peyers patches. Stimulation of CD8-expressing T cells by dendritic cells from Peyers patches, peripheral lymph nodes and spleen induced equivalent activation markers and effector activity in T cells, but only Peyers patch dendritic cells induced high levels of α4β7, responsiveness to TECK and the ability to home to the small intestine. These findings establish that Peyers patch dendritic cells imprint gut-homing specificity on T cells, and thus license effector/memory cells to access anatomical sites most likely to contain their cognate antigen.


Nature Immunology | 2005

Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells

Lois L. Cavanagh; Roberto Bonasio; Irina B. Mazo; Cornelia Halin; Guiying Cheng; Adrianus W. M. van der Velden; Annaiah Cariappa; Catherine M. Chase; Paul S. Russell; Michael N. Starnbach; Pandelakis A. Koni; Shiv Pillai; Wolfgang Weninger; Ulrich H. von Andrian

Dendritic cells (DCs) carry antigen from peripheral tissues via lymphatics to lymph nodes. We report here that differentiated DCs can also travel from the periphery into the blood. Circulating DCs migrated to the spleen, liver and lung but not lymph nodes. They also homed to the bone marrow, where they were retained better than in most other tissues. Homing of DCs to the bone marrow depended on constitutively expressed vascular cell adhesion molecule 1 and endothelial selectins in bone marrow microvessels. Two-photon intravital microscopy in bone marrow cavities showed that DCs formed stable antigen-dependent contacts with bone marrow–resident central memory T cells. Moreover, using this previously unknown migratory pathway, antigen-pulsed DCs were able to trigger central memory T cell–mediated recall responses in the bone marrow.


Journal of Immunology | 2003

Naive T Cell Recruitment to Nonlymphoid Tissues: A Role for Endothelium-Expressed CC Chemokine Ligand 21 in Autoimmune Disease and Lymphoid Neogenesis

Wolfgang Weninger; Hege S. Carlsen; Mahmoud Goodarzi; Farzad Moazed; Maura A. Crowley; Espen S. Baekkevold; Lois L. Cavanagh; Ulrich H. von Andrian

Naive T cells are usually excluded from nonlymphoid tissues. Only when such tertiary tissues are subjected to chronic inflammation, such as in some (but not all) autoimmune diseases, are naive T cells recruited to these sites. We show that the CCR7 ligand CC chemokine ligand (CCL)21 is sufficient for attracting naive T cells into tertiary organs. We performed intravital microscopy of cremaster muscle venules in T-GFP mice, in which naive T cells express green fluorescent protein (GFP). GFP+ cells underwent selectin-dependent rolling, but no firm adherence (sticking). Superfusion with CCL21, but not CXC chemokine ligand 12, induced integrin-dependent sticking of GFP+ cells. Moreover, CCL21 rapidly elicited accumulation of naive T cells into sterile s.c. air pouches. Interestingly, a second CCR7 ligand, CCL19, triggered T cell sticking in cremaster muscle venules, but failed to induce extravasation in air pouches. Immunohistochemistry studies implicate ectopic expression of CCL21 as a mechanism for naive T cell traffic in human autoimmune diseases. Most blood vessels in tissue samples from patients with rheumatoid arthritis (85 ± 10%) and ulcerative colitis (66 ± 1%) expressed CCL21, and many perivascular CD45RA+ naive T cells were found in these tissues, but not in psoriasis, where CCL21+ vessels were rare (17 ± 1%). These results identify endothelial CCL21 expression as an important determinant for naive T cell migration to tertiary tissues, and suggest the CCL21/CCR7 pathway as a therapeutic target in diseases that are associated with naive T cell recruitment.


PLOS Pathogens | 2008

Migratory dermal dendritic cells act as rapid sensors of protozoan parasites

Lai Guan Ng; Alice Hsu; Michael A. Mandell; Ben Roediger; Christoph Hoeller; Paulus Mrass; Amaya Iparraguirre; Lois L. Cavanagh; James A. Triccas; Stephen M. Beverley; Phillip Scott; Wolfgang Weninger

Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Gαi protein-coupled receptor–dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens.


Journal of Experimental Medicine | 2006

Random migration precedes stable target cell interactions of tumor-infiltrating T cells

Paulus Mrass; Hajime Takano; Lai Guan Ng; Sachin Daxini; Marcio O. Lasaro; Amaya Iparraguirre; Lois L. Cavanagh; Ulrich H. von Andrian; Hildegund C.J. Ertl; Philip G. Haydon; Wolfgang Weninger

The tumor microenvironment is composed of an intricate mixture of tumor and host-derived cells that engage in a continuous interplay. T cells are particularly important in this context as they may recognize tumor-associated antigens and induce tumor regression. However, the precise identity of cells targeted by tumor-infiltrating T lymphocytes (TILs) as well as the kinetics and anatomy of TIL-target cell interactions within tumors are incompletely understood. Furthermore, the spatiotemporal conditions of TIL locomotion through the tumor stroma, as a prerequisite for establishing contact with target cells, have not been analyzed. These shortcomings limit the rational design of immunotherapeutic strategies that aim to overcome tumor-immune evasion. We have used two-photon microscopy to determine, in a dynamic manner, the requirements leading to tumor regression by TILs. Key observations were that TILs migrated randomly throughout the tumor microenvironment and that, in the absence of cognate antigen, they were incapable of sustaining active migration. Furthermore, TILs in regressing tumors formed long-lasting (≥30 min), cognate antigen–dependent contacts with tumor cells. Finally, TILs physically interacted with macrophages, suggesting tumor antigen cross-presentation by these cells. Our results demonstrate that recognition of cognate antigen within tumors is a critical determinant of optimal TIL migration and target cell interactions, and argue against TIL guidance by long-range chemokine gradients.


Journal of Experimental Medicine | 2011

Cutaneous immunosurveillance by self-renewing dermal γδ T cells

Nital Sumaria; Ben Roediger; Lai Guan Ng; Jim Qin; Rachel Pinto; Lois L. Cavanagh; Elena Shklovskaya; Barbara Fazekas de St Groth; James A. Triccas; Wolfgang Weninger

The dermis contains a novel population of γδT cells that are distinct from epidermal γδT cells and produce IL-17 in response to mycobacterial infection.


Immunology and Cell Biology | 2002

Travellers in many guises: The origins and destinations of dendritic cells

Lois L. Cavanagh; Ulrich H. von Andrian

The migratory behaviour of dendritic cells (DC) is tightly linked to their differentiation state. Precursor DC constitutively repopulate normal tissues from the bloodstream, and are recruited in elevated numbers to sites of inflammation. Whilst maturing in response to antigenic stimulation, DC acquire the capability to enter lymph nodes via afferent lymphatic vessels, thus facilitating their presentation of antigen to naïve T cells. Peripheral blood monocytes constitute a second DC precursor population, which during an inflammatory response are recruited to the affected site where some differentiate into functional DC. The availability of separate DC precursor populations is thought to be significant for the character, amplification and perpetuation of the resultant immune response. In addition, the balance between steady‐state trafficking of incompletely activated DC bearing self‐antigens from the periphery, and the migration of fully mature DC from inflammatory sites into lymph nodes might have profound effects upon tolerance induction and activation of T cells, respectively.


Nature Immunology | 2014

Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection.

Arby Abtin; Rohit Jain; Andrew J. Mitchell; Ben Roediger; Anthony J. Brzoska; Shweta Tikoo; Qiang Cheng; Lai Guan Ng; Lois L. Cavanagh; Ulrich H. von Andrian; Michael J. Hickey; Neville Firth; Wolfgang Weninger

Transendothelial migration of neutrophils in postcapillary venules is a key event in the inflammatory response against pathogens and tissue damage. The precise regulation of this process is incompletely understood. We report that perivascular macrophages are critical for neutrophil migration into skin infected with the pathogen Staphylococcus aureus. Using multiphoton intravital microscopy we showed that neutrophils extravasate from inflamed dermal venules in close proximity to perivascular macrophages, which are a major source of neutrophil chemoattractants. The virulence factor α-hemolysin produced by S. aureus lyses perivascular macrophages, which leads to decreased neutrophil transmigration. Our data illustrate a previously unrecognized role for perivascular macrophages in neutrophil recruitment to inflamed skin and indicate that S. aureus uses hemolysin-dependent killing of these cells as an immune evasion strategy.


Journal of Investigative Dermatology | 2011

Visualizing the Neutrophil Response to Sterile Tissue Injury in Mouse Dermis Reveals a Three-Phase Cascade of Events

Lai Guan Ng; Jim Qin; Ben Roediger; Yilin Wang; Rohit Jain; Lois L. Cavanagh; Adrian L. Smith; Cheryl A. Jones; Michael J. de Veer; Michele A. Grimbaldeston; Els N.T. Meeusen; Wolfgang Weninger

Neutrophil granulocytes traffic into sites of organ injury in which they may not only participate in tissue repair and pathogen clearance but may also contribute to collateral cell damage through the release of noxious mediators. The dynamics and mechanisms of neutrophil migration in the extravascular space toward loci of tissue damage are not well understood. Here, we have used intravital multi-photon microscopy to dissect the behavior of neutrophils in response to tissue injury in the dermis of mice. We found that, following confined physical injury, initially rare scouting neutrophils migrated in a directional manner toward the damage focus. This was followed by the attraction of waves of additional neutrophils, and finally stabilization of the neutrophil cluster around the injury. Although neutrophil migration in the steady state and during the scouting phase depended on pertussis toxin-sensitive signals, the amplification phase was sensitive to interference with the cyclic adenosine diphosphate ribose pathway. We finally demonstrated that neutrophil scouts also transit through the non-inflamed dermis, suggesting immunosurveillance function by these cells. Together, our data unravel a three-step cascade of events that mediates the specific accumulation of neutrophils at sites of sterile tissue injury in the interstitial space.


Journal of Immunology | 2009

Plasmacytoid Dendritic Cells Are Dispensable during Primary Influenza Virus Infection

Amaya I. Wolf; Darya Buehler; Scott E. Hensley; Lois L. Cavanagh; E. John Wherry; Philippe Kastner; Susan Chan; Wolfgang Weninger

Plasmacytoid dendritic cells (pDC) are thought to be pivotal in the first line of defense against viral infections. Although previous studies have suggested that pDC regulate the immune response against respiratory syncytial virus, their role in pulmonary infection with influenza virus has remained unclear. Using mice with GFP-tagged pDC, we observed a marked increase in pDC numbers in the lung airways 3 days after intranasal infection with influenza virus A/PR/8/34. To further investigate their potential involvement in the disease, we made use of pDC-deficient IkarosL/L mice. In the absence of pDC, the recruitment of T cells to the bronchoalveolar space was delayed, which could be reversed by the adoptive transfer of pDC before infection. Surprisingly, however, when compared with wild-type animals, IkarosL/L mice revealed a similar course of disease, as determined by weight loss, viral titers, levels of neutralizing Ab, and lung pathology. Moreover, the activation and differentiation of influenza-specific CD8+ effector T cells was unaltered in the absence of pDC, as was the generation of CD8+ memory T cells. Taken together, our study suggests that pDC regulate the accumulation of T cells in the bronchoalveolar space during early influenza virus infection, but are dispensable for the control of this disease.

Collaboration


Dive into the Lois L. Cavanagh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge