Lois M. Harden
University of the Witwatersrand
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lois M. Harden.
Physiology & Behavior | 2006
Lois M. Harden; Irné du Plessis; Stephen Poole; Helen P. Laburn
Pro-inflammatory cytokines, interleukin (IL)-1beta, IL-6 and tumor necrosis factor-alpha (TNF-alpha) synthesized by activated macrophages and monocytes in response to administration of lipopolysaccharide (LPS), are considered important mediators of fever and sickness behavior. We administered rat-specific antisera for TNF-alpha, IL-1beta, IL-6 and leptin, to determine the involvement of peripherally released cytokines in LPS-induced fever and sickness behavior, measured as suppression of voluntary wheel-running and food intake. Male Sprague-Dawley rats (approximately 200 g) selected for their predisposition to spontaneously run on running wheels were anaesthetized with a combination of ketamine hydrochloride (80 mg/kg i.m.) and xylazine (4 mg/kg i.m.) and implanted intra-abdominally with temperature-sensitive radiotelemeters. Rats were injected intraperitoneally with anti-rat sera to one of the following, TNF-alpha, IL-1beta, IL-6 or leptin or with pre-immune sheep serum, followed by a subcutaneous injection of either LPS (250 microg/kg) or sterile saline. Lipopolysaccharide administration induced a approximately 1.3 (0.2) degrees C fever lasting approximately 10 h and reduced voluntary running by 93 (8.6)% and food intake by 51 (21.3)% compared to the saline response (ANOVA, P<0.05). Injection of anti-IL-6 serum or anti-leptin serum abolished the LPS-induced fever, anti-TNF-alpha serum affected only the early phase of fever and anti-IL-1beta serum had no effect on fever (ANOVA, P<0.05). LPS-induced suppression of voluntary running and food intake were attenuated in rats receiving anti-IL-6 serum, while the decrease in food intake was totally abolished in rats receiving anti-leptin serum (ANOVA, P<0.05). Injection of anti-TNF-alpha or anti-IL-1beta serum had no effect on LPS-induced sickness behavior. Peripherally released IL-6 and leptin therefore appear to be important in regulating LPS-induced fever and sickness behavior.
Brain Behavior and Immunity | 2008
Lois M. Harden; Irné du Plessis; Stephen Poole; Helen P. Laburn
Pro-inflammatory cytokines interleukin (IL)-6 and IL-1 beta can act in the brain (centrally) to cause fever. Sickness behaviors which accompany fever also appear to involve the central action of IL-1 beta. We injected species-homologous rat IL-6 and IL-1 beta directly into the brains of conscious rats to examine the effect of these cytokines on fever, and two behaviors affected by sickness, voluntary wheel-running and food intake. Male Sprague-Dawley rats selected for their predisposition to spontaneously run on running wheels were used in the experiment. Each rat was anaesthetized and had a temperature-sensitive radiotransmitter implanted intra-abdominally, and a 23-gauge stainless steel guide cannula inserted stereotaxically over the lateral cerebral ventricle. Rats were randomly assigned to receive intracerebroventricular injections of three doses of either IL-1 beta or IL-6 (100 ng, 1 ng or 0.1 ng IL-1 beta and 200 ng, 20 ng or 2 ng IL-6), or one of three different combinations of IL-1 beta and IL-6. Rats receiving either IL-1 beta or IL-6 showed a dose-dependent increase in body temperature and decrease in wheel-running (ANOVA, p<0.0001). Only rats receiving the highest dose of IL-1 beta significantly decreased food intake and body mass compared to rats receiving vehicle (ANOVA, p<0.001). Doses of IL-1 beta and IL-6 which, when injected on their own were non-pyrogenic and did not affect food intake and body mass, induced fever and anorexia when they were co-injected centrally. These results show that species-homologous rat IL-6 and IL-1 beta can act directly within the brain to decrease voluntary activity and suggest they also can act synergistically to induce anorexia and fever.
Psychoneuroendocrinology | 2011
Lois M. Harden; Irné du Plessis; Joachim Roth; Lisa C. Loram; Stephen Poole; Helen P. Laburn
Although peripherally released interleukin (IL)-6 is critical for fever, its role in sickness behaviors, in particular anorexia and lethargy, induced by lipopolysaccharide (LPS) administration appears to be less important. Using quantifiable measures of fever, anorexia and lethargy, that is, body temperature, food intake and voluntary wheel-running, we investigated whether the less-than-essential role for IL-6 in mediating sickness behaviors compared to fever implies important roles for other inflammatory mediators, particularly IL-1β and prostanoids, in these responses. Male Sprague-Dawley rats were randomly assigned to receive one of the following three injections before receiving a subcutaneous (SC) injection of LPS (250 μg/kg) or saline: (1) intraperitoneal injection of pre-immune serum or antiserum to IL-6 (IL-6AS), to reduce the biological activity of peripherally released IL-6; (2) intracerebroventricular injection of vehicle or a caspase-1 inhibitor, to inhibit the production of mature IL-1β; or (3) intraperitoneal injection of vehicle or one of the two doses (1 or 10 mg/kg) of diclofenac, a nonselective cyclooxygenase inhibitor shown to block the formation of prostanoids. LPS administration induced fever, anorexia and lethargy with an accompanying increase in IL-6 and IL-1β concentrations in the circulation and IL-1β in the brain. Rats pre-treated with: (1) IL-6AS had reduced plasma levels of bioactive IL-6, no fever and attenuated sickness behaviors; (2) the caspase-1 inhibitor had reduced concentrations of IL-1β in the pre-frontal cortex, hypothalamus and hippocampus, and attenuated fever and sickness behaviors; (3) diclofenac had a dose-dependent attenuation in fever and sickness behaviors. Doses of diclofenac which completely abolished fever however had lesser effects on anorexia and lethargy. Our results confirm a difference in the sensitivity of sickness responses to IL-6 antagonism and identify that it may be related to different levels of sensitivity or responsiveness in brain regions and/or mechanisms, to prostanoids, IL-1β, or IL-6 itself.
Journal of Sports Sciences | 2010
Shohn Wormgoor; Lois M. Harden; Warrick McKinon
Abstract Fast bowling is fundamental to all forms of cricket. The purpose of this study was to identify parameters that contribute to high ball release speeds in cricket fast bowlers. We assessed anthropometric dimensions, concentric and eccentric isokinetic strength of selected knee and shoulder muscle groups, and specific aspects of technique from a single delivery in 28 high-performance fast bowlers (age 22.0 ± 3.0 years, ball release speed 34.0 ± 1.3 m · s−1). Six 50-Hz cameras and the Ariel Performance Analysis System software were used to analyse the fast and accurate deliveries. Using Pearsons correlation, parameters that showed significant associations with ball release speed were identified. The findings suggest that greater front leg knee extension at ball release (r = 0.52), shoulder alignment in the transverse plane rotated further away from the batsman at front foot strike (r = 0.47), greater ankle height during the delivery stride (r = 0.44), and greater shoulder extension strength (r = 0.39) contribute significantly to higher ball release speeds. Predictor variables failed to allow their incorporation into a multivariate model, which is known to exist in less accomplished bowlers, suggesting that factors that determine ball release speed found in other groups may not apply to high-performance fast bowlers.
Physiology & Behavior | 2009
Gregory W. Skinner; Duncan Mitchell; Lois M. Harden
Although fever and sickness behavior are common responses to infection, it has been proposed that the sickness behaviors associated with infection, in particular lethargy and fatigue, may be more valuable clinical markers of illness and recovery in patients, than is body temperature alone. Measuring abdominal temperature, food intake and wheel running we therefore determined the dose thresholds and sensitivities of these responses to lipopolysaccharide (LPS). Male Sprague-Dawley rats were randomly assigned to receive one of three LPS doses (10, 50, 250 microg/kg), or saline, subcutaneously. Administration of LPS induced a dose-dependent increase in abdominal temperature and decrease in wheel running, food intake and body mass. Regression analysis revealed that decreased running was the most-sensitive of the sickness responses to LPS administration, with a regression slope of -41%/log microg, compared to the slopes for food intake (-30%/log microg, F(1,2)=244, P=0.004) and body mass (-2.2%/log microg, F(1,5)=7491, P<0.0001). To determine the likelihood that exercise training influenced the sickness responses we measured in our dose-response study we performed a second experiment in which we investigated whether fever and anorexia induced by LPS administration would present differently depending on whether rats had been exercising or sedentary. Six weeks of wheel running had no effect on the magnitude of fever and anorexia induced by LPS administration. Avoidance of physical activity therefore appears to be a more-sensitive indicator of a hosts reaction to LPS than is anorexia and fever.
Neuroscience | 2012
Jelena Damm; F. Wiegand; Lois M. Harden; R. Gerstberger; Christoph Rummel; Joachim Roth
The Toll-like receptor 7 (TLR7) agonist imiquimod is used for topical treatment of skin cancers. We studied the consequences of injections of imiquimod into a subcutaneous (s.c.) air pouch or of intraperitoneal (i.p.) injections on the manifestation of fever, sickness behavior, and the peripheral and brain-intrinsic induction of a variety of inflammatory molecules. Rats were given imiqimod s.c. or i.p. (1 or 5 mg/kg). Body temperature, motor activity, and food and water intake were recorded by telemetric devices. Peripheral and brain-intrinsic induction of inflammatory mediators was analyzed by real-time polymerase chain reaction (RT-PCR), bioassays, enzyme-linked immunosorbent assays (ELISAs), and immunohistochemistry. Imiquimod is the first TLR-agonist to produce more potent effects with s.c. than i.p. administration. Peripheral induction of interferons (IFNs) and putative circulating pyrogens corresponded to the magnitude of the illness responses. In the brain, an expression of cytokines (TNFα, IL-1β, and IL-6) and inducible forms of enzymes for prostaglandin E2 synthesis (COX-2 and mPGES) occurred, which was accompanied by a moderate activation of the transcription factors NFκB and STAT3, and a strong activation of the transcription factor NF-IL6, in cells of specific areas with an open blood-brain barrier. These inflammatory responses noted within the brain were more marked after s.c. administration, than i.p. administration of imiquimod. At a dose of 5 mg/kg, imiquimod causes rather moderate brain-inflammatory responses, which are related to peripheral IFN-expression and possibly mediated by brain-intrinsic activation of NF-IL6 and induction of a proinflammatory cocktail. The lack of a septic-like state in imiquimod-treated rats reinforces the therapeutic use of this drug.
Neuropharmacology | 2013
Jelena Damm; Lois M. Harden; Rüdiger Gerstberger; Joachim Roth; Christoph Rummel
The functional significance for activation of inflammatory transcription factors, such as signal transducer and activator of transcription (STAT3), nuclear factor (NF)κB or NF-interleukin (IL)6 and their contribution to the induction of brain controlled sickness responses, such as fever, during infection and inflammation is unknown. Using AG490, previously shown to inhibit the STAT3- and NF-IL6-signaling pathway, we therefore investigated the central involvement of these two signaling pathways in mediating sickness behavior, fever and accompanying brain inflammation induced by peripheral lipopolysaccharide (LPS)-stimulation. Rats pre-treated i.c.v. with AG490 1 h before the i.p. LPS-challenge (100 μg/kg) showed a modestly exaggerated fever, attenuated adipsia and almost unimpaired locomotor activity compared to LPS-controls receiving vehicle (i.c.v.). The LPS-induced anorexia was not altered and AG490 did not have any effect on rats receiving PBS (i.p.). We did observe effects of AG490 on STAT3-signaling at 4 h, while AG490-mediated changes in brain activity of inflammatory transcription factors at 8 h were not significant. Increased NF-IL6 and suppressor of cytokines 3 mRNA-expression in AG490/LPS-treated rats were indicative of a compensative activation at 24 h. Moreover, a significant decrease in hypothalamic anti-inflammatory IL-10-expression and an increase in inflammatory microsomal prostaglandin E synthase (mPGES) mRNA-expression 8 h after LPS-injection was revealed in AG490 pre-treated animals compared to solvent-treated LPS-controls. In summary, we have shown a dissociation between the effects of central AG490 treatment on fever and components of sickness behavior, which appears to be related to reduced IL-10 and increased mPGES-expression in the brain. Thus, AG490 might have therapeutic potential to reduce sickness behavior.
Journal of Neuroinflammation | 2013
Lois M. Harden; Christoph Rummel; Giamal N. Luheshi; Stephen Poole; Rüdiger Gerstberger; Joachim Roth
BackgroundWhereas the role played by interleukin (IL)-10 in modulating fever and sickness behavior has been linked to it targeting the production of pro-inflammatory cytokines in the circulation, liver and spleen, it is not known whether it could directly target the local production of pro-inflammatory cytokines within the sensory circumventricular organs (CVOs) situated within the brain, but outside the blood–brain barrier. Using inactivation of IL-10, we, therefore, investigated whether IL-10 could modulate the synthesis of pro-inflammatory cytokines within the sensory CVOs, in particular the organum vasculosum laminae terminalis (OVLT) and area postrema (AP).FindingsPrimary OVLT and AP microcultures were established from topographically excised rat pup brain tissue. The microcultures were pretreated with either IL-10 antibodies (AB) (10 μl/350 μl medium) or phosphate-buffered saline (PBS) (10 μl/350 μl medium) before being incubated with lipopolysaccharide (LPS) (100 μg/ml) or PBS in complete medium for 6 h. Supernatants were removed from the microcultures after 6 h of incubation with LPS and used for the determination of IL-6 and tumor necrosis factor (TNF)-α. Pre-treating the OVLT and AP microcultures with IL-10 antibodies significantly enhanced the LPS-induced increase in TNF-α and IL-6 in the supernatant obtained from the microcultures.ConclusionsOur results show for the first time that the LPS-induced release of pro-inflammatory cytokines in cells cultured from the AP and OVLT can be modulated in the presence of IL-10 antibodies. Thus, we have identified that the sensory CVOs may have a key role to play in both the initiation and modulation of neuroinflammation.
Regulatory Peptides | 2013
Thomas Hatzelmann; Lois M. Harden; Joachim Roth; Rüdiger Gerstberger
Intracerebroventricular (i.c.v.) injections of apelins have been shown to modulate the central control of cardiovascular function, as well as the homeostasis of fluid and salt balance, and to some extent also body core temperature. Here, we investigated the effects of i.c.v. administration of [Pyr(1)]apelin13 (PyrAp13; 20nmol) dissolved in artificial cerebrospinal fluid (aCSF), as compared to aCSF alone, on fever and sickness behavior elicited in rats by intraperitoneal injection of bacterial lipopolysaccharide (LPS, 100 μg/kg). Injections of LPS induced a short phase of hypothermia followed by a biphasic fever, depression of motor activity, anorexia and adipsia. I.c.v. injections of PyrAp13 without systemic LPS application slightly augmented motor activity at statistically unaltered core temperature. In combination with LPS, central administration of PyrAp13 significantly reduced fever during the time period of 3-9h after injection, but did not significantly attenuate anorexia and adipsia, and had no effect on LPS-induced lethargy. Rats injected with PyrAp13 along with LPS showed a reduced level of LPS-induced circulating tumor necrosis factor-α (TNF-α). Primary neuroglial cultures established from the hypothalamic paraventricular nucleus (PVN) and the median preoptic nucleus (MnPO), brain sites being of major importance for central thermoregulation and also expressing the apelin receptor, were incubated with medium alone, medium containing LPS (100 μg/ml) or LPS plus PyrAp13 (10(-6) mol/L). Ninety minutes after start of the incubation, LPS alone but not LPS in combination with PyrAp13 (10(-6) mol/L) caused a significant elevation of TNF-α in the supernatants. The novel observation that PyrAp13 represents a centrally acting endogenous antipyretic peptide is discussed in relation to its capacity to modulate peripheral and central formation of TNF-α.
Brain Behavior and Immunity | 2011
Tanya Swanepoel; Brian H. Harvey; Lois M. Harden; Helen P. Laburn; Duncan Mitchell
To investigate potential consequences for learning and memory, we have simulated the effects of Mycoplasma infection, in rats, by administering fibroblast-stimulating lipopepide-1 (FSL-1), a pyrogenic moiety of Mycoplasma salivarium. We measured the effects on body temperature, cage activity, food intake, and on spatial learning and memory in a Morris Water Maze. Male Sprague-Dawley rats had radio transponders implanted to measure abdominal temperature and cage activity. After recovery, rats were assigned randomly to receive intraperitoneal (I.P.) injections of FSL-1 (500 or 1000 μg kg(-1) in 1 ml kg(-1) phosphate-buffered saline; PBS) or vehicle (PBS, 1 ml kg(-1)). Body mass and food intake were measured daily. Training in the Maze commenced 18 h after injections and continued daily for four days. Spatial memory was assessed on the fifth day. In other rats, we measured concentrations of brain pro-inflammatory cytokines, interleukin (IL)-1β and IL-6, at 3 and 18 h after injections. FSL-1 administration induced a dose-dependent fever (∼1°C) for two days, lethargy (∼78%) for four days, anorexia (∼65%) for three days and body mass stunting (∼6%) for at least four days. Eighteen hours after FSL-1 administration, when concentrations of IL-1β, but not that of IL-6, were elevated in both the hypothalamus and the hippocampus, and when rats were febrile, lethargic and anorexic, learning in the Maze was unaffected. There also was no memory impairment. Our results support emerging evidence that impaired learning and memory is not inevitable during simulated infection.