Lokendra Kumar Sharma
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lokendra Kumar Sharma.
Cell Research | 2009
Jianxin Lu; Lokendra Kumar Sharma; Yidong Bai
Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.
Human Molecular Genetics | 2009
Jeong Soon Park; Lokendra Kumar Sharma; Hongzhi Li; RuiHua Xiang; Deborah Holstein; Jun Wu; James D. Lechleiter; Susan L. Naylor; Janice Jianhong Deng; Jianxin Lu; Yidong Bai
Mitochondrial alteration has been long proposed to play a major role in tumorigenesis. Recently, mitochondrial DNA (mtDNA) mutations have been found in a variety of cancer cells. In this study, we examined the contribution of mtDNA mutation and mitochondrial dysfunction in tumorigenesis first using human cell lines carrying a frame-shift at NADH dehydrogenase (respiratory complex I) subunit 5 gene (ND5); the same homoplasmic mutation was also identified in a human colorectal cancer cell line earlier. With increasing mutant ND5 mtDNA content, respiratory function including oxygen consumption and ATP generation through oxidative phosphorylation declined progressively, while lactate production and dependence on glucose increased. Interestingly, the reactive oxygen species (ROS) levels and apoptosis exhibited antagonistic pleiotropy associated with mitochondrial defects. Furthermore, the anchorage-dependence phenotype and tumor-forming capacity of cells carrying wild-type and mutant mtDNA were tested by growth assay in soft agar and subcutaneous implantation of the cells in nude mice. Surprisingly, the cell line carrying the heteroplasmic ND5 mtDNA mutation showed significantly enhanced tumor growth, while cells with homoplasmic form of the same mutation inhibited tumor formation. Similar results were obtained from the analysis of a series of mouse cell lines carrying a nonsense mutation at ND5 gene. Our results indicate that the mtDNA mutations might play an important role in the early stage of cancer development, possibly through alteration of ROS generation and apoptosis.
Human Molecular Genetics | 2011
Lokendra Kumar Sharma; Hezhi Fang; Jiangtao Liu; Rasika Vartak; Janice Jianhong Deng; Yidong Bai
Previously, we have shown that a heteroplasmic mutation in mitochondrial DNA-encoded complex I ND5 subunit gene resulted in an enhanced tumorigenesis through increased resistance to apoptosis. Here we report that the tumorigenic phenotype associated with complex I dysfunction could be reversed by introducing a yeast NADH quinone oxidoreductase (NDI1) gene. The NDI1 mediated electron transfer from NADH to Co-Q, bypassed the defective complex I and restored oxidative phosphorylation in the host cells. Alternatively, suppression of complex I activity by a specific inhibitor, rotenone or induction of oxidative stress by paraquat led to an increase in the phosphorylation of v-AKT murine thymoma viral oncogene (AKT) and enhanced the tumorigenesis. On the other hand, antioxidant treatment can ameliorate the reactive oxygen species-mediated AKT activation and reverse the tumorigenicity of complex I-deficient cells. Our results suggest that complex I defects could promote tumorigenesis through induction of oxidative stress and activation of AKT pathway.
Current Medicinal Chemistry | 2009
Lokendra Kumar Sharma; Jianxin Lu; Yidong Bai
Mitochondria are ubiquitous organelles in eukaryotic cells whose primary function is to generate energy supplies in the form of ATP through oxidative phosphorylation. As the entry point for most electrons into the respiratory chain, NADH:ubiquinone oxidoreductase, or complex I, is the largest and least understood component of the mitochondrial oxidative phosphorylation system. Substantial progress has been made in recent years in understanding its subunit composition, its assembly, the interaction among complex I and other respiratory components, and its role in oxidative stress and apoptosis. This review provides an updated overview of the structure of complex I, as well as its cellular functions, and discusses the implication of complex I dysfunction in various human diseases.
The Journal of Clinical Endocrinology and Metabolism | 2010
Alberto O. Chavez; Subhash Kamath; Rucha Jani; Lokendra Kumar Sharma; Adriana Monroy; Muhammad A. Abdul-Ghani; Victoria E. Centonze; Padma Sathyanarayana; Dawn K. Coletta; Cristopher P. Jenkinson; Yidong Bai; Franco Folli; Ralph A. DeFronzo; Devjit Tripathy
CONTEXT Mitochondrial dysfunction has been proposed as an underlying mechanism in the pathogenesis of insulin resistance and type 2 diabetes mellitus. OBJECTIVE To determine whether mitochondrial dysfunction plays a role in the free fatty acid (FFA)-induced impairment in insulin action in skeletal muscle of healthy subjects. DESIGN Eleven lean normal glucose tolerant individuals received 8 h lipid and saline infusion on separate days with a euglycemic insulin clamp during the last 2 h. Vastus lateralis muscle biopsies were performed at baseline and after 6 h lipid or saline infusion. Inner mitochondrial membrane potential (Psi(m)) and mitochondrial mass were determined ex vivo by confocal microscopy. RESULTS Compared with saline infusion, lipid infusion reduced whole-body glucose uptake by 22% (P < 0.05). Psi(m) decreased by 33% (P < 0.005) after lipid infusion and the decrement in Psi(m) correlated with change in plasma FFA after lipid infusion (r = 0.753; P < 0.005). Mitochondrial content and morphology did not change after lipid infusion. No significant changes in genes expression, citrate synthase activity, and total ATP content were observed after either lipid or saline infusion. CONCLUSIONS Short-term physiological increase in plasma FFA concentration in lean normal glucose tolerant subjects induces insulin resistance and impairs mitochondrial membrane potential but has no significant effects on mitochondrial content, gene expression, ATP content, or citrate synthase activity.
Autophagy | 2014
Meenakshi Tiwari; Lokendra Kumar Sharma; Difernando Vanegas; Danielle A. Callaway; Yidong Bai; James D. Lechleiter; Brian Herman
CASP2/caspase 2 plays a role in aging, neurodegeneration, and cancer. The contributions of CASP2 have been attributed to its regulatory role in apoptotic and nonapoptotic processes including the cell cycle, DNA repair, lipid biosynthesis, and regulation of oxidant levels in the cells. Previously, our lab demonstrated CASP2-mediated modulation of autophagy during oxidative stress. Here we report the novel finding that CASP2 is an endogenous repressor of autophagy. Knockout or knockdown of CASP2 resulted in upregulation of autophagy in a variety of cell types and tissues. Reinsertion of Caspase-2 gene (Casp2) in mouse embryonic fibroblast (MEFs) lacking Casp2 (casp2−/−) suppresses autophagy, suggesting its role as a negative regulator of autophagy. Loss of CASP2-mediated autophagy involved AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and autophagy-related proteins, indicating the involvement of the canonical pathway of autophagy. The present study also demonstrates an important role for loss of CASP2-induced enhanced reactive oxygen species production as an upstream event in autophagy induction. Additionally, in response to a variety of stressors that induce CASP2-mediated apoptosis, casp2−/− cells demonstrate a further upregulation of autophagy compared with wild-type MEFs, and upregulated autophagy provides a survival advantage. In conclusion, we document a novel role for CASP2 as a negative regulator of autophagy, which may provide important insight into the role of CASP2 in various processes including aging, neurodegeneration, and cancer.
Aging Cell | 2016
Robert J. Mishur; Maruf H. Khan; Erin Munkácsy; Lokendra Kumar Sharma; Alex Bokov; Haley Beam; Oxana Radetskaya; Megan B. Borror; Rebecca K. Lane; Yidong Bai; Shane L. Rea
Disruption of mitochondrial respiration in the nematode Caenorhabditis elegans can extend lifespan. We previously showed that long‐lived respiratory mutants generate elevated amounts of α‐ketoacids. These compounds are structurally related to α‐ketoglutarate, suggesting they may be biologically relevant. Here, we show that provision of several such metabolites to wild‐type worms is sufficient to extend their life. At least one mode of action is through stabilization of hypoxia‐inducible factor‐1 (HIF‐1). We also find that an α‐ketoglutarate mimetic, 2,4‐pyridinedicarboxylic acid (2,4‐PDA), is alone sufficient to increase the lifespan of wild‐type worms and this effect is blocked by removal of HIF‐1. HIF‐1 is constitutively active in isp‐1(qm150) Mit mutants, and accordingly, 2,4‐PDA does not further increase their lifespan. Incubation of mouse 3T3‐L1 fibroblasts with life‐prolonging α‐ketoacids also results in HIF‐1α stabilization. We propose that metabolites that build up following mitochondrial respiratory dysfunction form a novel mode of cell signaling that acts to regulate lifespan.
The FASEB Journal | 2012
Chengkang Zhang; Vincent Huang; Mariella Simon; Lokendra Kumar Sharma; Weiwei Fan; Richard H. Haas; Douglas C. Wallace; Yidong Bai; Taosheng Huang
Mitochondrial genome (mtDNA) mutation causes highly variable clinical features, and its pathogenesis is not fully understood. In this study, we analyzed the heteroplasmic mtDNA mutation C4936T (p.T156I) in ND2 of complex I and the homoplasmic mtDNA mutation A9181G (p.S219G) in ATPase 6 of complex V. Using cybrid technology, we found that in a high‐glucose medium in which cultured cells mainly depend on anaerobic glycolysis for energy, the C4936T mutation inhibited cell growth by 50%. Oxygen consumption and reactive oxygen species production were also reduced by 60 and 75%, respectively. Because the subject also had conjunctiva carcinoma, we further tested whether the C4936T mutation was associated with tumor formation. In an anchorage‐dependant growth test, we found that only cells with a high level of C4936T mutation formed colonies. In contrast, when the cells grew in a galactose medium in which cells were forced to generate ATP through oxidative phosphorylation, the C4936T mutation protected cells from apoptosis probably caused by the A9181G mutation. Our results suggest that the phenotype caused by mtDNA mutations may depend on the availability of the nutrients. This gene‐environment interaction may contribute to the complexity of pathogenesis and clinical phenotypes caused by mtDNA mutation.—Zhang, C., Huang, V. H., Simon, M., Sharma, L. K., Fan, W., Haas, R., Wallace, D. C., Bai, Y., Huang, T. Heteroplasmic mutations of the mitochondrial genome cause paradoxical effects on mitochondrial functions. FASEB J. 26, 4914–4924 (2012). www.fasebj.org
Free Radical Biology and Medicine | 2013
Hongzhi Li; Lokendra Kumar Sharma; Youfen Li; Peiqing Hu; Abimbola Idowu; Danhui Liu; Jianxin Lu; Yidong Bai
Mitochondrial respiratory chain defects have been associated with various diseases and with normal aging, particularly in tissues with high energy demands, including brain and skeletal muscle. Tissue-specific manifestation of mitochondrial DNA (mtDNA) mutations and mitochondrial dysfunction are hallmarks of mitochondrial diseases although the underlying mechanisms are largely unclear. Previously, we and others have established approaches for transferring mtDNA from muscle and synaptosomes of mice at various ages to cell cultures. In this study, we carried out a comprehensive bioenergetic analysis of cells bearing mitochondria derived from young, middle-aged, and old mouse skeletal muscles and synaptosomes. Significant age-associated alterations in oxidative phosphorylation and regulation during aging were observed in cybrids carrying mitochondria from both skeletal muscle and synaptosomes. Our results also revealed that loss of oxidative phosphorylation capacity may occur at various ages in muscle and brain. These findings indicate the existence of a tissue-specific regulatory mechanism for oxidative phosphorylation.
Nucleic Acids Research | 2010
Youfen Li; Hong Zhi Li; Peiqing Hu; Janice Deng; Mohammad Mehdi Banoei; Lokendra Kumar Sharma; Yidong Bai
Mitochondrial respiratory chain defects have been associated with various diseases and normal aging, particularly in tissues with high energy demands including skeletal muscle. Muscle-specific mitochondrial DNA (mtDNA) mutations have also been reported to accumulate with aging. Our understanding of the molecular processes mediating altered mitochondrial gene expression to dysfunction associated with mtDNA mutations in muscle would be greatly enhanced by our ability to transfer muscle mtDNA to established cell lines. Here, we report the successful generation of mouse cybrids carrying skeletal muscle mtDNA. Using this novel approach, we performed bioenergetic analysis of cells bearing mtDNA derived from young and old mouse skeletal muscles. A significant decrease in oxidative phosphorylation coupling and regulation capacity has been observed with cybrids carrying mtDNA from skeletal muscle of old mice. Our results also revealed decrease growth capacity and cell viability associated with the mtDNA derived from muscle of old mice. These findings indicate that a decline in mitochondrial function associated with compromised mtDNA quality during aging leads to a decrease in both the capacity and regulation of oxidative phosphorylation.
Collaboration
Dive into the Lokendra Kumar Sharma's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsSanjay Gandhi Post Graduate Institute of Medical Sciences
View shared research outputs