Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Long-Fang O. Chen is active.

Publication


Featured researches published by Long-Fang O. Chen.


Journal of Proteomics | 2013

Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing ☆

Mao-Sen Liu; Hui-Chun Li; Ying-Mi Lai; Hsiao-Feng Lo; Long-Fang O. Chen

UNLABELLED Previously, we investigated transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and mimics the action of exogenous supplied CK in delaying postharvest senescence of broccoli. Here, we used proteomics and transcriptomics to compare the mechanisms of ipt-transgenic and N(6)-benzylaminopurine (BA) CK treatment of broccoli during postharvest storage. The 2 treatments conferred common and distinct mechanisms. BA treatment decreased the quantity of proteins involved in energy and carbohydrate metabolism and amino acid metabolism, and ipt-transgenic treatment increased that of stress-related proteins and molecular chaperones and slightly affected levels of carbohydrate metabolism proteins. Both treatments regulated genes involved in CK signaling, sugar transport, energy and carbohydrate metabolism, amino acid metabolism and lipid metabolism, although ipt-transgenic treatment to a lesser extent. BA treatment induced genes encoding molecular chaperones, whereas ipt-transgenic treatment induced stress-related genes for cellular protection during storage. Both BA and ipt-transgenic treatments acted antagonistically on ethylene functions. We propose a long-term acclimation of metabolism and protection systems with ipt-transgenic treatment of broccoli and short-term modulation of metabolism and establishment of a protection system with both BA and ipt-transgenic treatments in delaying senescence of broccoli florets. BIOLOGICAL SIGNIFICANCE Transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and N(6)-benzylaminopurine (BA) CK treated broccoli both showed retardation of postharvest senescence during storage. The mechanisms underlying the two treatments were compared. The combination of proteomic and transcriptomic evidences revealed that the 2 treatments conferred common and distinct mechanisms in delaying senescence of broccoli florets. We propose a long-term acclimation of metabolism and protection systems with ipt-transgenic treatment of broccoli and short-term modulation of metabolism and establishment of a protection system with both BA and ipt-transgenic treatments in delaying senescence of broccoli florets. This article is part of a Special Issue entitled: Translational Plant Proteomics.


Journal of Agricultural and Food Chemistry | 2012

Arabidopsis ENDO2: Its Catalytic Role and Requirement of N‑Glycosylation for Function

Chia-Yun Ko; Yi-Ling Lai; Wen-Yu Liu; Chia-Hui Lin; Yu-Ting Chen; Long-Fang O. Chen; Tsai-Yun Lin; Jei-Fu Shaw

The Arabidopsis thaliana At1g68290 gene encoding an endonuclease was isolated and designated ENDO2, which was cloned into a binary vector to overexpress ENDO2 with a C-terminal 6 × His-tag in A. thaliana. Our Arabidopsis transgenic lines harboring 35SP::ENDO2 produced stable active enzyme with high yield. The protein was affinity purified from transgenic plants, and its identity was confirmed by liquid chromatography-mass spectrometry and automatic Edman degradation. ENDO2 enzyme digests RNA, ssDNA, and dsDNA, with a substrate preference for ssDNA and RNA. The activity toward ssDNA (361.7 U/mg) is greater than its dsDNase activity (14.1 U/mg) at neutral pH. ENDO2 effectively cleaves mismatch regions in heteroduplex DNA containing single base pair mismatches or insertion/deletion bases and can be applied to high-throughput detection of single base mutation. Our data also validated that the removal of sugar groups from ENDO2 strongly affects its enzymatic stability and activity.


BMC Genomics | 2014

Identification of cucurbitacins and assembly of a draft genome for Aquilaria agallocha.

Chuan-Hung Chen; Tony Chien-Yen Kuo; Meng-Han Yang; Ting-Ying Chien; Mei-Ju Chu; Li-Chun Huang; Chien-Yu Chen; Hsiao-Feng Lo; Shih-Tong Jeng; Long-Fang O. Chen

BackgroundAgarwood is derived from Aquilaria trees, the trade of which has come under strict control with a listing in Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora. Many secondary metabolites of agarwood are known to have medicinal value to humans, including compounds that have been shown to elicit sedative effects and exhibit anti-cancer properties. However, little is known about the genome, transcriptome, and the biosynthetic pathways responsible for producing such secondary metabolites in agarwood.ResultsIn this study, we present a draft genome and a putative pathway for cucurbitacin E and I, compounds with known medicinal value, from in vitro Aquilaria agallocha agarwood. DNA and RNA data are utilized to annotate many genes and protein functions in the draft genome. The expression changes for cucurbitacin E and I are shown to be consistent with known responses of A. agallocha to biotic stress and a set of homologous genes in Arabidopsis thaliana related to cucurbitacin bio-synthesis is presented and validated through qRT-PCR.ConclusionsThis study is the first attempt to identify cucurbitacin E and I from in vitro agarwood and the first draft genome for any species of Aquilaria. The results of this study will aid in future investigations of secondary metabolite pathways in Aquilaria and other non-model medicinal plants.


PLOS ONE | 2015

Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome

Ching-Ping Lin; Chia-Yun Ko; Ching-I Kuo; Mao-Sen Liu; Roland Schafleitner; Long-Fang O. Chen

We performed deep sequencing of the nuclear and organellar genomes of three mungbean genotypes: Vigna radiata ssp. sublobata TC1966, V. radiata var. radiata NM92 and the recombinant inbred line RIL59 derived from a cross between TC1966 and NM92. Moreover, we performed deep sequencing of the RIL59 transcriptome to investigate transcript variability. The mungbean chloroplast genome has a quadripartite structure including a pair of inverted repeats separated by two single copy regions. A total of 213 simple sequence repeats were identified in the chloroplast genomes of NM92 and RIL59; 78 single nucleotide variants and nine indels were discovered in comparing the chloroplast genomes of TC1966 and NM92. Analysis of the mungbean chloroplast transcriptome revealed mRNAs that were affected by transcriptional slippage and RNA editing. Transcriptional slippage frequency was positively correlated with the length of simple sequence repeats of the mungbean chloroplast genome (R2=0.9911). In total, 41 C-to-U editing sites were found in 23 chloroplast genes and in one intergenic spacer. No editing site that swapped U to C was found. A combination of bioinformatics and experimental methods revealed that the plastid-encoded RNA polymerase-transcribed genes psbF and ndhA are affected by transcriptional slippage in mungbean and in main lineages of land plants, including three dicots (Glycine max, Brassica rapa, and Nicotiana tabacum), two monocots (Oryza sativa and Zea mays), two gymnosperms (Pinus taeda and Ginkgo biloba) and one moss (Physcomitrella patens). Transcript analysis of the rps2 gene showed that transcriptional slippage could affect transcripts at single sequence repeat regions with poly-A runs. It showed that transcriptional slippage together with incomplete RNA editing may cause sequence diversity of transcripts in chloroplasts of land plants.


BMC Plant Biology | 2015

The effect of red light and far-red light conditions on secondary metabolism in Agarwood

Tony Chien-Yen Kuo; Chuan-Hung Chen; Shu-Hwa Chen; I-Hsuan Lu; Mei-Ju Chu; Li-Chun Huang; Chung-Yen Lin; Chien-Yu Chen; Hsiao-Feng Lo; Shih-Tong Jeng; Long-Fang O. Chen

BackgroundAgarwood, a heartwood derived from Aquilaria trees, is a valuable commodity that has seen prevalent use among many cultures. In particular, it is widely used in herbal medicine and many compounds in agarwood are known to exhibit medicinal properties. Although there exists much research into medicinal herbs and extraction of high value compounds, few have focused on increasing the quantity of target compounds through stimulation of its related pathways in this species.ResultsIn this study, we observed that cucurbitacin yield can be increased through the use of different light conditions to stimulate related pathways and conducted three types of high-throughput sequencing experiments in order to study the effect of light conditions on secondary metabolism in agarwood. We constructed genome-wide profiles of RNA expression, small RNA, and DNA methylation under red light and far-red light conditions. With these profiles, we identified a set of small RNA which potentially regulates gene expression via the RNA-directed DNA methylation pathway.ConclusionsWe demonstrate that light conditions can be used to stimulate pathways related to secondary metabolism, increasing the yield of cucurbitacins. The genome-wide expression and methylation profiles from our study provide insight into the effect of light on gene expression for secondary metabolism in agarwood and provide compelling new candidates towards the study of functional secondary metabolic components.


Canadian Journal of Plant Science | 2009

Growth, yield and shelf-life of isopentenyltransferase (ipt)-gene transformed broccoli.

Litfu Chan; Long-Fang O. Chen; Hsiu-Ying Lu; Chun-Hung Lin; Hung-Chang Huang; Meng-Yi Ting; You-Ming Chang; Chienyih Lin; Min-Tze Wu

Loss of chlorophyll leading to floret yellowing limits the post-harvest lifespan of broccoli (Brassica oleracea L. var. italica Plenck). Cytokinins are known to delay floral yellowing of plants. A transgene construct pSG766A, which results in the expression of isopentenyltransferase (ipt), the key enzyme for cytokinin synthesis, has been developed in broccoli. Expression of the ipt transgene is triggered by the senescence-associated gene promoter (SAG-13). Three selfed T5 lines of ipt transformed broccoli (lines 101, 102 and 103) have been obtained through selection for single copy insertion, acceptable horticultural traits and transgene ipt activity. These three transgenic inbred lines were evaluated in the field during 2004-2007 to determine their growth, yield and shelf-life after harvest, relative to a non-transgenic inbred line (104) and the parental variety Green King. For most of the vegetative growth parameters measured, year-to-year variability exceeded line-to-line variability. Inbreeding had li...


Molecules | 2015

Purification and Immobilization of the Recombinant Brassica oleracea Chlorophyllase 1 (BoCLH1) on DIAION®CR11 as Potential Biocatalyst for the Production of Chlorophyllide and Phytol

Yi-Li Chou; Chia-Yun Ko; Long-Fang O. Chen; Chih-Chung Yen; Jei-Fu Shaw

Recombinant Brassica oleracea chlorophyllase 1 (BoCLH1) with a protein molecular weight of 38.63 kDa was successfully expressed in E. coli and could catalyze chlorophyll (Chl) hydrolysis to chlorophyllide and phytol in vitro. In this study, we used DIAION®CR11, a highly porous cross-linked polystyrene divinylbenzene-based metal chelator, for purifying and immobilizing the poly (His)-tagged enzyme. The Cu(II) showed the highest protein adsorption (9.2 ± 0.43 mg/g gel) and enzyme activity (46.3 ± 3.14 U/g gel) for the immobilization of the poly (His)-tagged recombinant BoCLH1 compared with other metal chelators. Biochemical analysis of the immobilized enzyme showed higher chlorophyllase activity for Chl a hydrolysis in a weak base environment (pH 8.0), and activity above 70% was in a high-temperature environment, compared with the free enzyme. In addition, compared with free BoCLH1, the enzyme half-life (t1/2) of the immobilized BoCLH1 increased from 25.42 to 54.35 min (approximately two-fold) at 60 °C. The immobilized enzyme retained a residual activity of approximately 60% after 17 cycles in a repeated-batch operation. Therefore, DIAION®CR11Cu(II)-immobilized recombinant BoCLH1 can be repeatedly used to lower the cost and is potentially useful for the industrial production of chlorophyllide and phytol.


Plant and Cell Physiology | 2012

Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

Mao-Sen Liu; Long-Fang O. Chen; Chun-Hung Lin; Ying-Mi Lai; Jia-Yuan Huang; Zinmay Renee Sung

Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development.


Journal of Agricultural and Food Chemistry | 2016

Transcriptomic and Proteomic Research To Explore Bruchid-Resistant Genes in Mungbean Isogenic Lines.

Wu-Jui Lin; Chia-Yun Ko; Mao-Sen Liu; Chien-Yen Kuo; Dung-Chi Wu; Chien-Yu Chen; Roland Schafleitner; Long-Fang O. Chen; Hsiao-Feng Lo

Mungbean (Vigna radiata (L.) Wilczek) is an important rotation legume crop for human nutrition in Asia. Bruchids (Callosobruchus spp.) currently cause heavy damage as pests of grain legumes during storage. We used omics-related technologies to study the mechanisms of bruchid resistance in seeds of the nearly isogenic lines VC1973A (bruchid-susceptible) and VC6089A (bruchid-resistant). A total of 399 differentially expressed genes (DEGs) were identified between the two lines by transcriptome sequencing. Among these DEGs, 251 exhibited high expression levels and 148 expressed low expression levels in seeds of VC6089A. Forty-five differential proteins (DPs) were identified by isobaric tags for relative and absolute quantification (iTRAQ); 21 DPs had higher abundances in VC6089A, and 24 DPs had higher abundances in VC1973A. According to transcriptome and proteome data, only three DEGs/DPs, including resistant-specific protein (g39185), gag/pol polyprotein (g34458), and aspartic proteinase (g5551), were identified and located on chromosomes 5, 1, and 7, respectively. Both g39185 and g34458 genes encode a protein containing a BURP domain. In previous research on bruchid molecular markers, the g39185 gene located close to the molecular markers of major bruchid-resistant locus may be a bruchid-resistant gene.


Molecular Plant | 2018

Trithorax Group Proteins Act Together with a Polycomb Group Protein to Maintain Chromatin Integrity for Epigenetic Silencing during Seed Germination in Arabidopsis

Fan Xu; Tony Kuo; Yenny Rosli; Mao-Sen Liu; Limin Wu; Long-Fang O. Chen; Jennifer C. Fletcher; Zinmay Renee Sung; Li Pu

Polycomb group (PcG) and trithorax group (trxG) proteins have been shown to act antagonistically to epigenetically regulate gene expression in eukaryotes. The trxG proteins counteract PcG-mediated floral repression in Arabidopsis, but their roles in other developmental processes are poorly understood. We investigated the interactions between the trxG genes, ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) and ULTRAPETALA1 (ULT1), and the PcG gene EMBRYONIC FLOWER 1 (EMF1) during early development. Unexpectedly, we found that mutations in the trxG genes failed to rescue the early-flowering phenotype of emf1 mutants. Instead, emf1 atx1 ult1 seedlings showed a novel swollen root phenotype and massive deregulation of gene expression. Greater ectopic expression of seed master regulatory genes in emf1 atx1 ult1 triple than in emf1 single mutants indicates that PcG and trxG factors together repress seed gene expression after germination. Furthermore, we found that the widespread gene derepression is associated with reduced levels of H3K27me3, an epigenetic repressive mark of gene expression, and with globally altered chromatin organization. EMF1, ATX1, and ULT1 are able to bind the chromatin of seed genes and ULT1 can physically interact with ATX1 and EMF1, suggesting that the trxG and EMF1 proteins directly associate at target gene loci for EMF1-mediated gene silencing. Thus, while ATX1, ULT1, and EMF1 interact antagonistically to regulate flowering, they work together to maintain chromatin integrity and prevent precocious seed gene expression after germination.

Collaboration


Dive into the Long-Fang O. Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chien-Yu Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hsiao-Feng Lo

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge