Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Long Luo is active.

Publication


Featured researches published by Long Luo.


Langmuir | 2013

Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes.

Long Luo; Henry S. White

The electrochemical generation of individual H(2) nanobubbles at Pt nanodisk electrodes immersed in a 0.5 M H(2)SO(4) solution is reported. A sudden drop in current associated with the transport-limited reduction of protons is observed in the i–V response at Pt nanodisk electrodes with radii of less than 50 nm. This decrease in current (~95% blockage) corresponds to the formation of a single H(2) nanobubble attached to the nanoelectrode that blocks proton transport to the surface. The current at which nanobubble formation occurs, i(nb)(p), is independent of scan rate and H(2)SO(4) concentration (for [H(2)SO(4)] > 0.1 M), indicating a critical concentration profile of electrogenerated H(2) required to nucleate a nanobubble. Finite element simulation based on Fick’s first law, combined with the Young–Laplace equation and Henry’s law, indicates that the concentration of H(2) near the nanoelectrode surface at i(nb)(p) exceeds the saturation concentration necessary to generate a nanobubble with a size comparable to the electrode size. The rapid dissolution of the nanobubble due to the high inner Laplace pressure is precisely balanced by the electrogeneration of H(2) at the partially exposed Pt surface, resulting in a dynamically stabilized nanobubble. Preliminary measurements of the i–t response during nanobubble formation indicate a two-step nucleation and growth mechanism with time scales on the order of 100 μs (or less) and ~1 ms, respectively.


Reviews in Analytical Chemistry | 2014

Resistive-Pulse Analysis of Nanoparticles

Long Luo; Sean R. German; Wen Jie Lan; Deric A. Holden; Tony L. Mega; Henry S. White

The development of nanopore fabrication methods during the past decade has led to the resurgence of resistive-pulse analysis of nanoparticles. The newly developed resistive-pulse methods enable researchers to simultaneously study properties of a single nanoparticle and statistics of a large ensemble of nanoparticles. This review covers the basic theory and recent advances in applying resistive-pulse analysis and extends to more complex transport motion (e.g., stochastic thermal motion of a single nanoparticle) and unusual electrical responses (e.g., resistive-pulse response sensitive to surface charge), followed by a brief summary of numerical simulations performed in this field. We emphasize the forces within a nanopore governing translocation of low-aspect-ratio, nondeformable particles but conclude by also considering soft materials such as liposomes and microgels.


Journal of Physical Chemistry Letters | 2014

Electrochemical Measurements of Single H2 Nanobubble Nucleation and Stability at Pt Nanoelectrodes

Qianjin Chen; Long Luo; Hamaseh Faraji; Stephen W. Feldberg; Henry S. White

Single H2 nanobubble nucleation is studied at Pt nanodisk electrodes of radii less than 50 nm, where H2 is produced through electrochemical reduction of protons in a strong acid solution. The critical concentration of dissolved H2 required for nanobubble nucleation is measured to be ∼0.25 M. This value is ∼310 times larger than the saturation concentration at room temperature and pressure and was found to be independent of acid type (e.g., H2SO4, HCl, and H3PO4) and nanoelectrode size. The effects of different surfactants on H2 nanobubble nucleation are consistent with the classic nucleation theory. As the surfactant concentration in H2SO4 solution increases, the solution surface tension decreases, resulting in a lower nucleation energy barrier and consequently a lower supersaturation concentration required for H2 nanobubble nucleation. Furthermore, amphiphilic surfactant molecules accumulate at the H2/solution interface, hindering interfacial H2 transfer from the nanobubble into the solution; consequently, the residual current decreases with increasing surfactant concentration.


Analytical Chemistry | 2014

Low-Voltage Origami-Paper-Based Electrophoretic Device for Rapid Protein Separation

Long Luo; Xiang Li; Richard M. Crooks

We present an origami paper-based electrophoretic device (oPAD-Ep) that achieves rapid (∼5 min) separation of fluorescent molecules and proteins. Due to the innovative design, the required driving voltage is just ∼10 V, which is more than 10 times lower than that used for conventional electrophoresis. The oPAD-Ep uses multiple, thin (180 μm/layer) folded paper layers as the supporting medium for electrophoresis. This approach significantly shortens the distance between the anode and cathode, and this, in turn, accounts for the high electric field (>1 kV/m) that can be achieved even with a low applied voltage. The multilayer design of the oPAD-Ep enables convenient sample introduction by use of a slip layer as well as easy product analysis and reclamation after electrophoresis by unfolding the origami paper and cutting out desired layers. We demonstrate the use of oPAD-Ep for simple separation of proteins in bovine serum, which illustrates its potential applications for point-of-care diagnostic testing.


Langmuir | 2015

Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode

Qianjin Chen; Long Luo; Henry S. White

We report the electrochemical generation of a single hydrogen bubble within the cavity of a recessed Pt nanopore electrode. The recessed Pt electrode is a conical pore in glass that contains a micrometer-scale Pt disk (1-10 μm radius) at the nanopore base and a nanometer-scale orifice (10-100 nm radius) that restricts diffusion of electroactive molecules and dissolved gas between the nanopore cavity and bulk solution. The formation of a H2 bubble at the Pt disk electrode in voltammetric experiments results from the reduction of H(+) in a 0.25 M H2SO4 solution; the liquid-to-gas phase transformation is indicated in the voltammetric response by a precipitous decrease in the cathodic current due to rapid bubble nucleation and growth within the nanopore cavity. Finite element simulations of the concentration distribution of dissolved H2 within the nanopore cavity, as a function of the H(+) reduction current, indicate that H2 bubble nucleation at the recessed Pt electrode surface occurs at a critical supersaturation concentration of ∼0.22 M, in agreement with the value previously obtained at (nonrecessed) Pt disk electrodes (∼0.25 M). Because the nanopore orifice limits the diffusion of H2 out of the nanopore cavity, an anodic peak corresponding to the oxidation of gaseous and dissolved H2 trapped in the recessed cavity is readily observed on the reverse voltammetric scan. Integration of the charge associated with the H2 oxidation peak is found to approach that of the H(+) reduction peak at high scan rates, confirming the assignment of the anodic peak to H2 oxidation. Preliminary results for the electrochemical generation of O2 bubbles from water oxidation at a recessed nanopore electrode are consistent with the electrogeneration of H2 bubbles.


Journal of the American Chemical Society | 2017

Tunability of the Adsorbate Binding on Bimetallic Alloy Nanoparticles for the Optimization of Catalytic Hydrogenation

Long Luo; Zhiyao Duan; Hao Li; Joohoon Kim; Graeme Henkelman; Richard M. Crooks

In this paper, we show that PtAu and PdAu random alloy dendrimer-encapsulated nanoparticles with an average size of ∼1.6 nm have different catalytic activity trends for allyl alcohol hydrogenation. Specifically, PtAu nanoparticles exhibit a linear increase in activity with increasing Pt content, whereas PdAu dendrimer-encapsulated nanoparticles show a maximum activity at a Pd content of ∼60%. Both experimental and theoretical results suggest that this contrasting behavior is caused by differences in the strength of H binding on the PtAu and PdAu alloy surfaces. The results have significant implications for predicting the catalytic performance of bimetallic nanoparticles on the basis of density functional theory calculations.


ACS Nano | 2012

Tunable negative differential electrolyte resistance in a conical nanopore in glass.

Long Luo; Deric A. Holden; Wen Jie Lan; Henry S. White

Liquid-phase negative differential resistance (NDR) is observed in the i-V behavior of a conical nanopore (~300 nm orifice radius) in a glass membrane that separates an external low-conductivity 5 mM KCl solution of dimethylsulfoxide (DMSO)/water (v/v 3:1) from an internal high-conductivity 5 mM KCl aqueous solution. NDR appears in the i-V curve of the negatively charged nanopore as the voltage-dependent electro-osmotic force opposes an externally applied pressure force, continuously moving the location of the interfacial zone between the two miscible solutions to a position just inside the nanopore orifice. An ~80% decrease in the ionic current occurs over less that a ~10 mV increase in applied voltage. The NDR turn-on voltage was found to be tunable over a ~1 V window by adjusting the applied external pressure from 0 to 50 mmHg. Finite-element simulations based on solution of Navier-Stokes, Poisson, and convective Nernst-Planck equations for mixed solvent electrolytes within a negatively charged nanopore yield predictions of the NDR behavior that are in qualitative agreement with the experimental observations. Applications in chemical sensing of a tunable, solution-based electrical switch based on the NDR effect are discussed.


ACS Nano | 2016

Efficient CO Oxidation Using Dendrimer-Encapsulated Pt Nanoparticles Activated with <2% Cu Surface Atoms

Long Luo; Liang Zhang; Zhiyao Duan; Aliya S. Lapp; Graeme Henkelman; Richard M. Crooks

In this paper, we show that the onset potential for CO oxidation electrocatalyzed by ∼2 nm dendrimer-encapsulated Pt nanoparticles (Pt DENs) is shifted negative by ∼300 mV in the presence of a small percentage (<2%) of Cu surface atoms. Theory and experiments suggest that the catalytic enhancement arises from a cocatalytic Langmuir-Hinshelwood mechanism in which the small number of Cu atoms selectively adsorb OH, thereby facilitating reaction with CO adsorbed to the dominant Pt surface. Theory suggests that these Cu atoms are present primarily on the (100) facets of the Pt DENs.


Journal of Physical Chemistry Letters | 2015

Unusual Activity Trend for CO Oxidation on PdxAu140–x@Pt Core@Shell Nanoparticle Electrocatalysts

Long Luo; Liang Zhang; Graeme Henkelman; Richard M. Crooks

A theoretical and experimental study of the electrocatalytic oxidation of CO on PdxAu140-x@Pt dendrimer-encapsulated nanoparticle (DEN) catalysts is presented. These nanoparticles are comprised of a core having an average of 140 atoms and a Pt monolayer shell. The CO oxidation activity trend exhibits an unusual koppa shape as the number of Pd atoms in the core is varied from 0 to 140. Calculations based on density functional theory suggest that the koppa-shaped trend is driven primarily by structural changes that affect the CO binding energy on the surface. Specifically, a pure Au core leads to deformation of the Pt shell and a compression of the Pt lattice. In contrast, Pd, from the pure Pd cores, tends to segregate on the DEN surface, forming an inverted configuration having Pt within the core and Pd in the shell. With a small addition of Au, however, the alloy PdAu cores stabilize the core@shell structures by preventing Au and Pd from escaping to the particle surface.


Analytical Chemistry | 2017

Faradaic Ion Concentration Polarization on a Paper Fluidic Platform

Xiang Li; Long Luo; Richard M. Crooks

We describe the design and characteristics of a paper-based analytical device for analyte concentration enrichment. The device, called a hybrid paper-based analytical device (hyPAD), uses faradaic electrochemistry to create an ion depletion zone (IDZ), and hence a local electric field, within a nitrocellulose flow channel. Charged analytes are concentrated near the IDZ when their electrophoretic and electroosmotic velocities balance. This process is called faradaic ion concentration polarization. The hyPAD is simple to construct and uses only low-cost materials. The hyPAD can be tuned for optimal performance by adjusting the applied voltage or changing the electrode design. Moreover, the throughput of hyPAD is 2 orders of magnitude higher than that of conventional, micron-scale microfluidic devices. The hyPAD is able to concentrate a range of analytes, including small molecules, DNA, proteins, and nanoparticles, in the range of 200-500-fold within 5 min.

Collaboration


Dive into the Long Luo's collaboration.

Top Co-Authors

Avatar

Richard M. Crooks

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graeme Henkelman

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Li

University of Texas System

View shared research outputs
Top Co-Authors

Avatar

Zhiyao Duan

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Li

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge