Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Longguang Jiang is active.

Publication


Featured researches published by Longguang Jiang.


Journal of Biological Chemistry | 2011

Structural basis for recognition of urokinase-type plasminogen activator by plasminogen activator inhibitor-1

Zhonghui Lin; Longguang Jiang; Cai Yuan; Jan K. Jensen; Xu Zhang; Zhipu Luo; Barbara C. Furie; Bruce Furie; Peter A. Andreasen; Mingdong Huang

Plasminogen activator inhibitor-1 (PAI-1), together with its physiological target urokinase-type plasminogen activator (uPA), plays a pivotal role in fibrinolysis, cell migration, and tissue remodeling and is currently recognized as being among the most extensively validated biological prognostic factors in several cancer types. PAI-1 specifically and rapidly inhibits uPA and tissue-type PA (tPA). Despite extensive structural/functional studies on these two reactions, the underlying structural mechanism has remained unknown due to the technical difficulties of obtaining the relevant structures. Here, we report a strategy to generate a PAI-1·uPA(S195A) Michaelis complex and present its crystal structure at 2.3-Å resolution. In this structure, the PAI-1 reactive center loop serves as a bait to attract uPA onto the top of the PAI-1 molecule. The P4–P3′ residues of the reactive center loop interact extensively with the uPA catalytic site, accounting for about two-thirds of the total contact area. Besides the active site, almost all uPA exosite loops, including the 37-, 60-, 97-, 147-, and 217-loops, are involved in the interaction with PAI-1. The uPA 37-loop makes an extensive interaction with PAI-1 β-sheet B, and the 147-loop directly contacts PAI-1 β-sheet C. Both loops are important for initial Michaelis complex formation. This study lays down a foundation for understanding the specificity of PAI-1 for uPA and tPA and provides a structural basis for further functional studies.


Journal of Applied Entomology | 2010

Predicting potential distribution of chestnut phylloxerid (Hemiptera: Phylloxeridae) based on GARP and Maxent ecological niche models

X. Y. Wang; Xiaolei Huang; Longguang Jiang; Ge-Xia Qiao

The chestnut phylloxerid, Moritziella castaneivora, has been recently recorded as a forest pest in China. It heavily damaged chestnut trees and has caused serious economic losses in some main chestnut production areas. In order to effectively monitor and manage this pest, it is necessary to investigate its potential geographical distribution worldwide. In this study, we used two ecological niche models, Genetic Algorithm for Rule‐set Production (GARP) and Maximum Entropy (Maxent), along with the geographical distribution of the host plants, Japanese chestnut (Castanea crenata) and Chinese chestnut (Castanea mollissima), to predict the potential geographical distribution of M. castaneivora. The results suggested that the suitable distribution areas based on GARP were general consistent with those based on Maxent, but GARP predicted distribution areas that extended more in size than did Maxent. The results also indicated that the suitable areas for chestnut phylloxerid infestations were mainly restricted to Northeast China (northern Liaoning), East China (southern Shandong, northern Jiangsu and western Anhui), North China (southern Hebei, Beijing and Tianjin), Central China (eastern Hubei and southern Henan), Japan (Kinki, Shikoku and Tohoku) and most parts of the Korean Peninsula. In addition, some provinces of central and western China were predicted to have low suitability or unsuitable areas (e.g. Xinjiang, Qinghai and Tibet). A jackknife test in Maxent showed that the average precipitation in July was the most important environmental variable affecting the distribution of this pest species. Consequently, the study suggests several reasonable regulations and management strategies for avoiding the introduction or invasion of this high‐risk chestnut pest to these potentially suitable areas.


Current Drug Targets | 2011

Structural Basis for Therapeutic Intervention of uPA/uPAR System

Jacky Chi Ki Ngo; Longguang Jiang; Zhonghui Lin; Cai Yuan; Zhuo Chen; Xu Zhang; Hai-Yang Yu; Jun-Dong Wang; Lin Lin; Mingdong Huang

Urokinase-type plasminogen activator (uPA) is one of the two physiological serine proteases responsible for the activation of plasminongen to plasmin. uPA activity is regulated by its inhibitors (PAI-1 and PAI-2) and its receptor (uPAR), and an expanding list of their interacting proteins. In addition to plasminogen activation, this system also plays important roles in the regulation of many cellular processes including cell proliferation, adhesion and migration. It is beyond reasonable doubt that this enzyme system plays a central role in tumor biology and represents a high potential target for therapeutic intervention of tumor growth and metastasis. During the past fifteen years, crystal structures of uPA and its inhibitors have facilitated the development of uPA inhibitors. Many crystal structures of proteins in the uPA/uPAR system have also been reported recently, especially a series of structures of uPAR and its complexes with vitronectin and uPA, facilitating the development and evaluation of uPAR inhibitors. Recent progress on uPA inhibitors will be summarized in this article. The unique structural features and the druggable potentials of these new structures will also be discussed.


Journal of Molecular Biology | 2011

The Binding Mechanism of a Peptidic Cyclic Serine Protease Inhibitor

Longguang Jiang; Anna Sigrid Pii Svane; Hans Peter Sørensen; Jan K. Jensen; Masood Hosseini; Zhuo Chen; Caroline Weydert; Jakob T. Nielsen; Anni Christensen; Cai Yuan; Knud J. Jensen; Niels Chr. Nielsen; Anders Malmendal; Mingdong Huang; Peter A. Andreasen

Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding kinetics and thermodynamics by surface plasmon resonance and isothermal titration calorimetry. We found that upain-1 changes both main-chain conformation and side-chain orientations as it binds to the protease, in particular its Trp3 residue and the surrounding backbone. The properties of upain-1 are strongly influenced by the addition of three to four amino acids long N-terminal and C-terminal extensions to the core, disulfide-bond-constrained sequence: The C-terminal extension stabilises the solution structure compared to the core peptide alone, and the protease-bound structure of the peptide is stabilised by intrapeptide contacts between the N-terminal extension and the core peptide around Trp3. These results provide a uniquely detailed description of the binding of a peptidic protease inhibitor to its target and are of general importance in the development of peptidic inhibitors with high specificity and new inhibitory mechanisms.


ChemBioChem | 2013

Bicyclic peptide inhibitor of urokinase-type plasminogen activator: mode of action.

Renée Roodbeen; Berit Paaske; Longguang Jiang; Jan K. Jensen; Anni Christensen; Jakob T. Nielsen; Mingdong Huang; Frans A. A. Mulder; Niels Chr. Nielsen; Peter A. Andreasen; Knud J. Jensen

The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptide‐based inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase‐type plasminogen activator (uPA), based on the established monocyclic peptide, upain‐2. It was successfully converted to a bicyclic peptide, without loss of inhibitory properties. The aim was to produce a peptide cyclised by an amide bond with an additional stabilising across‐the‐ring covalent bond. We expected this bicyclic peptide to exhibit a lower entropic burden upon binding. Two bicyclic peptides were synthesised with affinities similar to that of upain‐2, and their binding energetics were evaluated by isothermal titration calorimetry. Indeed, compared to upain‐2, the bicyclic peptides showed reduced loss of entropy upon binding to uPA. We also investigated the solution structures of the bicyclic peptide by NMR spectroscopy to map possible conformations. An X‐ray structure of the bicyclic‐peptide–uPA complex confirmed an interaction similar to that for the previous upain‐1/upain‐2–uPA complexes. These physical studies of the peptide–protease interactions will aid future designs of bicyclic peptide protease inhibitors.


Journal of Medicinal Chemistry | 2015

Design of Specific Serine Protease Inhibitors Based on a Versatile Peptide Scaffold: Conversion of a Urokinase Inhibitor to a Plasma Kallikrein Inhibitor

Peng Xu; Mingming Xu; Longguang Jiang; Qinglan Yang; Zhipu Luo; Zbigniew Dauter; Mingdong Huang; Peter A. Andreasen

All serine proteases hydrolyze peptide bonds by the same basic mechanism and have very similar active sites, in spite of the fact that individual proteases have different physiological functions. We here report a strategy for designing high-affinity and high-specificity serine protease inhibitors using a versatile peptide scaffold, a 10-mer peptide, mupain-1 (CPAYSRYLDC). Mupain-1 was previously reported as a specific inhibitor of murine urokinase-type plasminogen activator (Ki = 0.55 μM) without measurable affinity to plasma kallikrein (Ki > 1000 μM). On the basis of a structure-based rational design, we substituted five residues of mupain-1 and converted it to a potent plasma kallikrein inhibitor (Ki = 0.014 μM). X-ray crystal structure analysis showed that the new peptide was able to adapt a new set of enzyme surface interactions by a slightly changed backbone conformation. Thus, with an appropriate re-engineering, mupain-1 can be redesigned to specific inhibitors of other serine proteases.


PLOS ONE | 2014

A cyclic peptidic serine protease inhibitor: increasing affinity by increasing peptide flexibility.

Baoyu Zhao; Peng Xu; Longguang Jiang; Berit Paaske; Tobias Kromann-Hansen; Jan K. Jensen; Hans Peter Sørensen; Zhuo Liu; Jakob T. Nielsen; Anni Christensen; Masood Hosseini; Kasper K. Sørensen; Niels Christian Nielsen; Knud J. Jensen; Mingdong Huang; Peter A. Andreasen

Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden.


Journal of Virology | 2017

The Crystal Structure of the Fifth Scavenger Receptor Cysteine-Rich Domain of Porcine CD163 Reveals an Important Residue Involved in Porcine Reproductive and Respiratory Syndrome Virus Infection

Hongfang Ma; Longguang Jiang; Songlin Qiao; Yubao Zhi; Xin-xin Chen; Yanyan Yang; Xiaojing Huang; Mingdong Huang; Rui Li; Gaiping Zhang

ABSTRACT Porcine reproductive and respiratory syndrome (PRRS) has become an economically critical factor in swine industry since its worldwide spread in the 1990s. Infection by its causative agent, PRRS virus (PRRSV), was proven to be mediated by an indispensable receptor, porcine CD163 (pCD163), and the fifth scavenger receptor cysteine-rich domain (SRCR5) is essential for virus infection. However, the structural details and specific residues of pCD163 SRCR5 involved in infection have not been defined yet. In this study, we prepared recombinant pCD163 SRCR5 in Drosophila melanogaster Schneider 2 (S2) cells and determined its crystal structure at a high resolution of 2.0 Å. This structure includes a markedly long loop region and shows a special electrostatic potential, and these are significantly different from those of other members of the scavenger receptor cysteine-rich superfamily (SRCR-SF). Subsequently, we carried out structure-based mutational studies to identify that the arginine residue at position 561 (Arg561) in the long loop region is important for PRRSV infection. Further, we showed Arg561 probably takes effect on the binding of pCD163 to PRRSV during virus invasion. Altogether the current work provides the first view of the CD163 SRCR domain, expands our knowledge of the invasion mechanism of PRRSV, and supports a molecular basis for prevention and control of the virus. IMPORTANCE PRRS has caused huge economic losses to pig farming. The syndrome is caused by PRRSV, and PRRSV infection has been shown to be mediated by host cell surface receptors. One of them, pCD163, is especially indispensable, and its SRCR5 domain has been further demonstrated to play a significant role in virus infection. However, its structural details and the residues involved in infection are unknown. In this study, we determined the crystal structure of pCD163 SRCR5 and then carried out site-directed mutational studies based on the crystal structure to elucidate which residue is important. Our work not only provides structural information on the CD163 SRCR domain for the first time but also indicates the molecular mechanism of PRRSV infection and lays a foundation for future applications in prevention and control of PRRS.


Journal of Molecular Biology | 2015

Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide-Protease Fusions.

Hans Peter Sørensen; Peng Xu; Longguang Jiang; Tobias Kromann-Hansen; Knud J. Jensen; Mingdong Huang; Peter A. Andreasen

We have developed a new concept for designing peptidic protein modulators, by recombinantly fusing the peptidic modulator, with randomized residues, directly to the target protein via a linker and screening for internal modulation of the activity of the protein. We tested the feasibility of the concept by fusing a 10-residue-long, disulfide-bond-constrained inhibitory peptide, randomized in selected positions, to the catalytic domain of the serine protease murine urokinase-type plasminogen activator. High-affinity inhibitory peptide variants were identified as those that conferred to the fusion protease the lowest activity for substrate hydrolysis. The usefulness of the strategy was demonstrated by the selection of peptidic inhibitors of murine urokinase-type plasminogen activator with a low nanomolar affinity. The high affinity could not have been predicted by rational considerations, as the high affinity was associated with a loss of polar interactions and an increased binding entropy.


The International Journal of Biochemistry & Cell Biology | 2016

Dimer conformation of soluble PECAM-1, an endothelial marker

Longguang Jiang; Lin Lin; Rui Li; Cai Yuan; Mingming Xu; Joy H. Huang; Mingdong Huang

Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface receptor widely distributed on endothelium and hematopoietic-derived cells, and maintain the integrity of the blood vessels. PECAM-1 is widely recognized as an endothelial cell marker. The homophilic interaction through its extracellular domain of PECAM-1 (soluble PECAM-1, or sPECAM-1) is important to its functions. However, structural details for such dimerization are not fully understood. Here we report the production of recombinant sPECAM-1 in large quantity by Drosophila expression system and the small-angle X-ray diffraction (SAXS) study. The recombinant sPECAM-1 was found to form one population of dimer, but not oligomer, and was able to bind to heparin immobilized on a chip in surface plasmon resonance imaging (SPRi) binding experiments. The results of SAXS demonstrated that sPECAM-1 formed a symmetric homodimer of Ω-shape in solution, and each protomer adopted an extended conformation. The dimer is mediated through the intermolecular interactions through the first N-terminal domain (D1) of sPECAM-1. This model provides new structural information for its homophilic interaction mechanism.

Collaboration


Dive into the Longguang Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cai Yuan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knud J. Jensen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baoyu Zhao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge