Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lora A. Richards is active.

Publication


Featured researches published by Lora A. Richards.


Ecology Letters | 2011

Global patterns of leaf mechanical properties

Yusuke Onoda; Mark Westoby; Peter B. Adler; Amy M.F. Choong; Fiona J. Clissold; Johannes H. C. Cornelissen; Sandra Díaz; Nathaniel J. Dominy; Alison A. Elgart; Lucas Enrico; Paul V. A. Fine; Jerome J. Howard; Adel Jalili; Kaoru Kitajima; Hiroko Kurokawa; Clare McArthur; Peter W. Lucas; Lars Markesteijn; Natalia Pérez-Harguindeguy; Lourens Poorter; Lora A. Richards; Louis S. Santiago; Enio Sosinski; Sunshine A. Van Bael; David I. Warton; Ian J. Wright; S. Joseph Wright; Nayuta Yamashita

Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Phytochemical diversity drives plant–insect community diversity

Lora A. Richards; Lee A. Dyer; Matthew L. Forister; Angela M. Smilanich; Craig D. Dodson; Michael D. Leonard; Christopher S. Jeffrey

Significance Phytochemical diversity is a key component of functional diversity. Challenges in quantifying phytochemical diversity have limited our understanding of the causes and consequences of variation in phytochemical diversity across plant species and families. Here we show that phytochemical diversity across dozens of plant species predicts herbivore diversity, herbivore specialization, phototoxicity, herbivory, and attack by natural enemies. Our approach and findings provide a framework for future investigations focused on uncovering chemical underpinnings of trophic interactions at realistic ecological, geographic, and taxonomic scales, and have implications for the conservation of functional and taxonomic diversity. What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores.


Journal of Chemical Ecology | 2010

Synergistic effects of amides from two piper species on generalist and specialist herbivores.

Lora A. Richards; Lee A. Dyer; Angela M. Smilanich; Craig D. Dodson

Plants use a diverse mix of defenses against herbivores, including multiple secondary metabolites, which often affect herbivores synergistically. Chemical defenses also can affect natural enemies of herbivores via limiting herbivore populations or by affecting herbivore resistance to parasitoids. In this study, we performed feeding experiments to examine the synergistic effects of imides and amides (hereafter “amides”) from Piper cenocladum and P. imperiale on specialist (Eois nympha, Geometridae) and generalist (Spodoptera frugiperda, Noctuidae) lepidopteran larvae. Each Piper species has three unique amides, and in each experiment, larvae were fed diets containing different concentrations of single amides or combinations of the three. The amides from P. imperiale had negative synergistic effects on generalist survival and specialist pupal mass, but had no effect on specialist survival. Piper cenocladum amides also acted synergistically to increase mortality caused by parasitoids, and the direct negative effects of mixtures on parasitoid resistance and pupal mass were stronger than indirect effects via changes in growth rate and approximate digestibility. Our results are consistent with plant defense theory that predicts different effects of plant chemistry on generalist versus adapted specialist herbivores. The toxicity of Piper amide mixtures to generalist herbivores are standard bottom-up effects, while specialists experienced the top-down mediated effect of mixtures causing reduced parasitoid resistance and associated decreases in pupal mass.


PLOS ONE | 2013

Effects of CO2 and temperature on tritrophic interactions.

Lee A. Dyer; Lora A. Richards; Stephanie A. Short; Craig D. Dodson

There has been a significant increase in studies of how global change parameters affect interacting species or entire communities, yet the combined or interactive effects of increased atmospheric CO2 and associated increases in global mean temperatures on chemically mediated trophic interactions are mostly unknown. Thus, predictions of climate-induced changes on plant-insect interactions are still based primarily on studies of individual species, individual global change parameters, pairwise interactions, or parameters that summarize communities. A clear understanding of community response to global change will only emerge from studies that examine effects of multiple variables on biotic interactions. We examined the effects of increased CO2 and temperature on simple laboratory communities of interacting alfalfa, chemical defense, armyworm caterpillars, and parasitoid wasps. Higher temperatures and CO2 caused decreased plant quality, decreased caterpillar development times, developmental asynchrony between caterpillars and wasps, and complete wasp mortality. The effects measured here, along with other effects of global change on natural enemies suggest that biological control and other top-down effects of insect predators will decline over the coming decades.


Journal of Chemical Ecology | 2012

Synergistic Effects of Iridoid Glycosides on the Survival, Development and Immune Response of a Specialist Caterpillar, Junonia coenia (Nymphalidae)

Lora A. Richards; Evan C. Lampert; M. Deane Bowers; Craig D. Dodson; Angela M. Smilanich; Lee A. Dyer

Plants use a diverse mix of defenses against herbivores, including multiple secondary metabolites, which may affect herbivores synergistically. Chemical defenses also can affect natural enemies of herbivores via limiting herbivore populations or by affecting herbivore resistance or susceptibility to these enemies. In this study, we conducted larval feeding experiments to examine the potential synergistic effects of iridoid glycosides (IGs) found in Plantago spp. (Plantaginaceae) on the specialist buckeye caterpillar, Junonia coenia (Nymphalidae). Caterpillars were placed on artificial diets containing different concentrations of single IGs (aucubin or catalpol alone) or combinations of the two IGs. Larval performance and immune response were recorded to test the hypothesis that IGs would have positive synergistic effects on buckeyes, which are specialists on IG plants. The positive synergistic effects that IGs had on buckeyes in our experiments included lower mortality, faster development, and higher total iridoid glycoside sequestration on mixed diets than on aucubin- or catalpol-only diets. Furthermore, we found negative synergistic effects of IGs on the immune response of buckeye caterpillars. These results demonstrate multiple synergistic effects of IGs and indicate a potential trade-off between larval performance and parasitoid resistance.


New Phytologist | 2016

Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars

Andrea E. Glassmire; Christopher S. Jeffrey; Matthew L. Forister; Thomas L. Parchman; Chris C. Nice; Joshua P. Jahner; Joseph S. Wilson; Thomas R. Walla; Lora A. Richards; Angela M. Smilanich; Michael D. Leonard; Colin R. Morrison; Wilmer Simbaña; Luis Salagaje; Craig D. Dodson; James S. Miller; Eric J. Tepe; Santiago Villamarín-Cortéz; Lee A. Dyer

Summary Chemically mediated plant–herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high‐performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host‐specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping‐by‐sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation. We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid. Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects.


Ecology | 2014

Percentage leaf herbivory across vascular plant species

Martin M. Turcotte; Christina J. M. Thomsen; Geoffrey T. Broadhead; Paul V. A. Fine; Ryan M. Godfrey; Greg P. A. Lamarre; Sebastian T. Meyer; Lora A. Richards; Marc T. J. Johnson

Herbivory is viewed as a major driver of plant evolution and the most important energy pathway from plants to higher trophic levels. Therefore, understanding patterns of herbivory on plants remains a key focus in evolution and ecology. The evolutionary impacts of leaf herbivory include altering plant fitness, local adaptation, the evolution of defenses, and the diversification of plants as well as natural enemies. Leaf herbivory also impacts ecological processes such as plant productivity, community composition, and ecosystem nutrient cycling. Understanding the impact of herbivory on these ecological and evolutionary processes requires species-specific, as opposed to community-level, measures of herbivory. In addition, species-specific data enables the use of modern comparative methods to account for phylogenetic non-independence. Although hundreds of studies have measured natural rates of leaf consumption, we are unaware of any accessible compilation of these data. We created such a data set to provide the raw data needed to test general hypotheses relating to plant–herbivore interactions and to test the influence of biotic and abiotic factors on herbivory rates across large spatial scales. A large repository will make this endeavor more efficient and robust. In total, we compiled 2641 population-level measures for either annual or daily rates of leaf herbivory across 1145 species of vascular plants collected from 189 studies. All damage measures represent natural occurrences of herbivory that span numerous angiosperm, gymnosperm, and fern species. To enable researchers to explore the causes of variation in herbivory and how these might interact, we added information about the study sites including: geolocation, climate classification, habitat descriptions (e.g., seashore, grassland, forest, agricultural fields), and plant trait information concerning growth form and duration (e.g., annual vs. perennial). We also included extensive details of the methodology used to measure leaf damage, including seasons and months of sampling, age of leaves, and the method used to estimate percentage area missing. We anticipate that these data will make it possible to test important hypotheses in the plant–herbivore literature, including the plant apparency hypothesis, the latitudinal-herbivory defense hypothesis, the resource availability hypothesis, and the macroevolutionary escalation of defense hypothesis.


Journal of Natural Products | 2014

Antiherbivore Prenylated Benzoic Acid Derivatives from Piper kelleyi

Christopher S. Jeffrey; Michael D. Leonard; Andrea E. Glassmire; Craig D. Dodson; Lora A. Richards; Massuo J. Kato; Lee A. Dyer

The known prenylated benzoic acid derivative 3-geranyl-4-hydroxy-5-(3″,3″-dimethylallyl)benzoic acid (1) and two new chromane natural products were isolated from the methanolic extract of the leaves of Piper kelleyi Tepe (Piperaceae), a midcanopy tropical shrub that grows in lower montane rain forests in Ecuador and Peru. Structure determination using 1D and 2D NMR analysis led to the structure of the chromene 2 and to the reassignment of the structure of cumanensic acid as 4, an isomeric chromene previously isolated from Piper gaudichaudianum. The structure and relative configuration of new chromane 3 was determined using 1D and 2D NMR spectroscopic analysis and was found to be racemic by ECD spectropolarimetry. The biological activity of 1-3 was evaluated against a lab colony of the generalist caterpillar Spodoptera exigua (Noctuidae), and low concentrations of 2 and 3 were found to significantly reduce fitness. Further consideration of the biosynthetic relationship of the three compounds led to the proposal that 1 is converted to 2 via an oxidative process, whereas 3 is produced through hetero-[4+2] dimerization of a quinone methide derived from the chromene 2.


Phytochemistry Reviews | 2016

Phytochemical diversity and synergistic effects on herbivores

Lora A. Richards; Andrea E. Glassmire; Kaitlin M. Ochsenrider; Angela M. Smilanich; Craig D. Dodson; Christopher S. Jeffrey; Lee A. Dyer

Synergistic effects of multiple plant secondary metabolites on upper trophic levels constitute an underexplored but potentially widespread component of coevolution and ecological interactions. Examples of plant secondary metabolites acting synergistically as insect deterrents are not common, and many studies focus on the pharmaceutical applications of natural products, where activity is serendipitous and not an evolved response. This review summarizes some systems that are ideal for testing synergistic plant defenses and utilizes a focused meta-analysis to examine studies that have tested effects of multiple compounds on insects. Due to a dearth of ecological synergy studies, one of the few patterns for synergy that we are able to report from the meta-analysis is that phytochemical mixtures have a larger overall effect on generalist herbivores than specialist herbivores. We recommend a focus on synergy in chemical ecology programs and suggest future hypothesis tests and methods. These approaches are not focused on techniques in molecular biology to examine mechanisms at the cellular level, rather we recommend uncovering the existence of synergy first, by combining the best methods in organic synthesis, isolation, chemical ecology, bioassays, and quantitative analyses. Data generated by our recommended methods should provide rigorous tests of important hypotheses on how intraclass and interclass compounds act synergistically to deter insects, disrupt the immune response, and ultimately contribute to diversification. Further synergy research should also contribute to determining if antiherbivore synergy is widespread among plant secondary metabolites, which would be consistent with the hypothesis that synergistic defenses are a key attribute of the evolved diverse chemical mixtures found in plants.


Evolution | 2017

Host conservatism, geography, and elevation in the evolution of a Neotropical moth radiation

Joshua P. Jahner; Matthew L. Forister; Thomas L. Parchman; Angela M. Smilanich; James S. Miller; Joseph S. Wilson; Thomas R. Walla; Eric J. Tepe; Lora A. Richards; Mario Alberto Quijano-Abril; Andrea E. Glassmire; Lee A. Dyer

The origins of evolutionary radiations are often traced to the colonization of novel adaptive zones, including unoccupied habitats or unutilized resources. For herbivorous insects, the predominant mechanism of diversification is typically assumed to be a shift onto a novel lineage of host plants. However, other drivers of diversification are important in shaping evolutionary history, especially for groups residing in regions with complex geological histories. We evaluated the contributions of shifts in host plant clade, bioregion, and elevation to diversification in Eois (Lepidoptera: Geometridae), a hyper‐diverse genus of moths found throughout the Neotropics. Relationships among 107 taxa were reconstructed using one mitochondrial and two nuclear genes. In addition, we used a genotyping‐by‐sequencing approach to generate 4641 SNPs for 137 taxa. Both datasets yielded similar phylogenetic histories, with relationships structured by host plant clade, bioregion, and elevation. While diversification of basal lineages often coincided with host clade shifts, more recent speciation events were more typically associated with shifts across bioregions or elevational gradients. Overall, patterns of diversification in Eois are consistent with the perspective that shifts across multiple adaptive zones synergistically drive diversification in hyper‐diverse lineages.

Collaboration


Dive into the Lora A. Richards's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph J. O'Brien

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge