Loranne Magoun
University of Massachusetts Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Loranne Magoun.
Molecular Microbiology | 1999
Jenifer Coburn; Wambui Chege; Loranne Magoun; Sarah C. Bodary; John M. Leong
The spirochaetal agents of Lyme disease, Borrelia burgdorferi (sensu lato) bind to integrins αIIbβ3, αvβ3 and α5β1 in purified form and on the surfaces of human cells. Using a phage display library of B. burgdorferi (sensu stricto) DNA, a candidate ligand for β3‐chain integrins was identified. The native B. burgdorferi protein, termed p66, is known to be recognized by human Lyme disease patient sera and to be expressed on the surface of the spirochaete. We show here that recombinant p66 binds specifically to β3‐chain integrins and inhibits attachment of intact B. burgdorferi to the same integrins. When expressed on the surface of Escherichia coli, this protein increases the attachment of E. coli to a transfected cell line that expresses αvβ3, but not to the parental cell line, which expresses no β3‐chain integrins. Localization of p66 on the surface of B. burgdorferi, the ability of recombinant forms of the protein to bind to β3‐chain integrins and the fact that p66 and B. burgdorferi bind to β3‐chain integrins in a mutually exclusive manner make p66 an attractive candidate bacterial ligand for integrins αIIbβ3 and αvβ3.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Joshua R. Fischer; Nikhat Parveen; Loranne Magoun; John M. Leong
Host cell binding is an essential step in colonization by many bacterial pathogens, and the Lyme disease agent, Borrelia burgdorferi, which colonizes multiple tissues, is capable of attachment to diverse cell types. Glycosaminoglycans (GAGs) are ubiquitously expressed on mammalian cells and are recognized by multiple B. burgdorferi surface proteins. We previously showed that B. burgdorferi strains differ in the particular spectrum of GAGs that they recognize, leading to differences in the cultured mammalian cell types that they efficiently bind. The molecular basis of these binding specificities remains undefined, due to the difficulty of analyzing multiple, potentially redundant cell attachment pathways and to the paucity of genetic tools for this pathogen. In the current study, we show that the expression of decorin-binding protein (Dbp) A and/or DbpB, two B. burgdorferi surface proteins that bind GAGs, is sufficient to convert a high-passage nonadherent B. burgdorferi strain into one that efficiently binds 293 epithelial cells. Epithelial cell attachment was mediated by dermatan sulfate, and, consistent with this GAG-binding specificity, these recombinant strains did not bind EA-Hy926 endothelial cells. The GAG-binding properties of bacteria expressing DbpB or DbpA were distinguishable, and DbpB but not DbpA promoted spirochetal attachment to C6 glial cells. Thus, DbpA and DbpB may each play central but distinct roles in cell type-specific binding by Lyme disease spirochetes. This study illustrates that transformation of high-passage B. burgdorferi strains may provide a relatively simple genetic approach to analyze virulence-associated phenotypes conferred by multiple bacterial factors.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Didier F. Vingadassalom; Arunas Kazlauskas; Brian M. Skehan; Hui-Chun Cheng; Loranne Magoun; Douglas Robbins; Michael K. Rosen; Kalle Saksela; John M. Leong
Enterohemorrhagic Escherichia coli O157:H7 translocates 2 effectors to trigger localized actin assembly in mammalian cells, resulting in filamentous actin “pedestals.” One effector, the translocated intimin receptor (Tir), is localized in the plasma membrane and clustered upon binding the bacterial outer membrane protein intimin. The second, the proline-rich effector EspFU (aka TccP) activates the actin nucleation-promoting factor WASP/N-WASP, and is recruited to sites of bacterial attachment by a mechanism dependent on an Asn-Pro-Tyr (NPY458) sequence in the Tir C-terminal cytoplasmic domain. Tir, EspFU, and N-WASP form a complex, but neither EspFU nor N-WASP bind Tir directly, suggesting involvement of another protein in complex formation. Screening of the mammalian SH3 proteome for the ability to bind EspFU identified the SH3 domain of insulin receptor tyrosine kinase substrate (IRTKS), a factor known to regulate the cytoskeleton. Derivatives of WASP, EspFU, and the IRTKS SH3 domain were capable of forming a ternary complex in vitro, and replacement of the C terminus of Tir with the IRTKS SH3 domain resulted in a fusion protein competent for actin assembly in vivo. A second domain of IRTKS, the IRSp53/MIM homology domain (IMD), bound to Tir in a manner dependent on the C-terminal NPY458 sequence, thereby recruiting IRTKS to sites of bacterial attachment. Ectopic expression of either the IRTKS SH3 domain or the IMD, or genetic depletion of IRTKS, blocked pedestal formation. Thus, enterohemorrhagic E. coli translocates 2 effectors that bind to distinct domains of a common host factor to promote the formation of a complex that triggers robust actin assembly at the plasma membrane.
Molecular Microbiology | 1999
Hui Liu; Loranne Magoun; Steven A. Luperchio; David B. Schauer; John M. Leong
Enterohaemorrhagic Escherichia coli (EHEC) has emerged as an important agent of diarrhoeal disease. Attachment to host cells, an essential step during intestinal colonization by EHEC, is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (A/E) lesion, directly beneath bound bacteria. The outer membrane protein intimin is required for the formation of this structure, as is Tir, a bacterial protein that is translocated into the host cell and is thought to function as a receptor for intimin. To understand intimin function better, we fused EHEC intimin to a homologous protein, Yersinia pseudotuberculosis invasin, or to maltose‐binding protein. The N‐terminal 539 amino acids of intimin were sufficient to promote outer membrane localization of the C‐terminus of invasin and, conversely, the N‐terminal 489 amino acids of invasin were sufficient to promote the localization of the C‐terminus of intimin. The C‐terminal 181 residues of intimin were sufficient to bind mammalian cells that had been preinfected with an enteropathogenic E. coli strain that expresses Tir but not intimin. Binding of intimin derivatives to preinfected cells correlated with binding to recombinant Tir protein. Finally, the 181‐residue minimal Tir‐binding region of intimin, when purified and immobilized on latex beads, was sufficient to trigger A/E lesions on preinfected mammalian cells.
Infection and Immunity | 2002
Benfang Lei; Frank R. DeLeo; Sean D. Reid; Jovanka M. Voyich; Loranne Magoun; Mengyao Liu; Kevin R. Braughton; Stacy M. Ricklefs; Nancy P. Hoe; Robert L. Cole; John M. Leong; James M. Musser
ABSTRACT Recently, it was reported that a streptococcal Mac protein (designated Mac5005) made by serotype M1 group A Streptococcus (GAS) is a homologue of human CD11b that inhibits opsonophagocytosis and killing of GAS by human polymorphonuclear leukocytes (PMNs) (B. Lei, F. R. DeLeo, N. P. Hoe, M. R. Graham, S. M. Mackie, R. L. Cole, M. Liu, H. R. Hill, D. E. Low, M. J. Federle, J. R. Scott, and J. M. Musser, Nat. Med. 7:1298-1305, 2001). To study mac variation and expression of the Mac protein, the gene in 67 GAS strains representing 36 distinct M protein serotypes was sequenced. Two distinct genetic complexes were identified, and they were designated complex I and complex II. Mac variants in each of the two complexes were closely related, but complex I and complex II variants differed on average at 50.66 ± 5.8 amino acid residues, most of which were located in the middle one-third of the protein. Complex I Mac variants have greater homology with CD11b than complex II variants. GAS strains belonging to serotypes M1 and M3, the most abundant M protein serotypes responsible for human infections in many case series, have complex I Mac variants. The mac gene was cloned from representative strains assigned to complexes I and II, and the Mac proteins were purified to apparent homogeneity. Both Mac variants had immunoglobulin G (IgG)-endopeptidase activity. In contrast to Mac5005 (complex I), Mac8345 (complex II) underwent autooxidation of its cysteine residues, resulting in the loss of IgG-endopeptidase activity. A Mac5005 Cys94Ala site-specific mutant protein was unable to cleave IgG but retained the ability to inhibit IgG-mediated phagocytosis by human PMNs. Thus, the IgG-endopeptidase activity was not essential for the key biological function of Mac5005. Although Mac5005 and Mac8345 each have an Arg-Gly-Asp (RGD) motif, the proteins differed in their interactions with human integrins αvβ3 and αIIbβ3. Binding of Mac5005 to integrins αvβ3 and αIIbβ3 was mediated primarily by the RGD motif in Mac5005, whereas binding of Mac8345 involved the RGD motif and a region in the middle one-third of the molecule whose sequence is different in Mac8345 and Mac5005. Taken together, the data add to the emerging theme in GAS pathogenesis that allelic variation in virulence genes contributes to fundamental differences in host-pathogen interactions among strains.
Molecular Microbiology | 2007
Kenneth Geno Campellone; Andrew J. Roe; Anders Løbner-Olesen; Kenan C. Murphy; Loranne Magoun; Michael John Brady; Arthur Donohue-Rolfe; Saul Tzipori; David L. Gally; John M. Leong; Martin G. Marinus
Enterohaemorrhagic Escherichia coli (EHEC) are highly infectious pathogens capable of causing severe diarrhoeal illnesses. As a critical step during their colonization, EHEC adhere intimately to intestinal epithelial cells and generate F‐actin ‘pedestal’ structures that elevate them above surrounding cell surfaces. Intimate adhesion and pedestal formation result from delivery of the EHEC type III secretion system (TTSS) effector proteins Tir and EspFU into the host cell and expression of the bacterial outer membrane adhesin, intimin. To investigate a role for DNA methylation during the regulation of adhesion and pedestal formation in EHEC, we deleted the dam (DNA adenine methyltransferase) gene from EHEC O157:H7 and demonstrate that this mutation results in increased interactions with cultured host cells. EHECΔdam exhibits dramatically elevated levels of adherence and pedestal formation when compared with wild‐type EHEC, and expresses significantly higher protein levels of intimin, Tir and EspFU. Analyses of GFP fusions, Northern blotting, reverse transcription polymerase chain reaction, and microarray experiments indicate that the abundance of Tir in the dam mutant is not due to increased transcription levels, raising the possibility that Dam methylation can indirectly control protein expression by a post‐transcriptional mechanism. In contrast to other dam‐deficient pathogens, EHECΔdam is capable of robust intestinal colonization of experimentally infected animals.
Molecular Microbiology | 2000
Loranne Magoun; Wolfram R. Zückert; Douglas Robbins; Nikhat Parveen; Kishore R. Alugupalli; Tom G. Schwan; Alan G. Barbour; John M. Leong
Tick‐borne relapsing fever, caused by pathogenic Borrelia such as B. hermsii and B. turicatae, features recurrent episodes of bacteraemia, each of which is caused by a population of spirochaetes that expresses a different variable major protein. Relapsing fever is also associated with the infection of a variety of tissues, such as the central nervous system. In this study, we show that glycosaminoglycans (GAGs) mediate the attachment of relapsing fever spirochaetes to mammalian cells. B. hermsii strain DAH bound to immobilized heparin, and heparin and dermatan sulphate blocked bacterial binding to host cells. Bacterial binding was diminished by inhibition of host cell GAG synthesis or sulphation, or by the enzymatic removal of GAGs. GAGs mediated the attachment of relapsing fever spirochaetes to potentially relevant target cells, such as endothelial and glial cells. B. hermsii was able to attach to GAGs independently of variable major proteins, because strains expressing the variable major proteins Vsp33, Vlp7 or no variable major protein at all each recognized GAGs. Nevertheless, we found that a variable major protein of B. turicatae directly promoted GAG binding by this relapsing fever spirochaete. B. turicatae strain Oz1 serotype B, which expresses the variable major protein VspB, bound to GAGs more efficiently than did B. turicatae Oz1 serotype A, which expresses VspA. Recombinant VspB, but not VspA, bound to heparin and dermatan sulphate. Previous studies have shown that strain Oz1 serotype B grows to higher concentrations in the blood than does Oz1 serotype A. Thus, relapsing fever spirochaetes have the potential to express Vsp‐dependent and Vsp‐independent GAG‐binding activities and, for one pair of highly related B. turicatae strains, differences in GAG binding correlate with differences in tissue tropism.
Molecular Microbiology | 2002
Hui Liu; Padhma Radhakrishnan; Loranne Magoun; Moses Prabu; Kenneth Geno Campellone; Pamela Savage; Feng He; Celia A. Schiffer; John M. Leong
Attachment to host cells by enterohaemorrhagic Escherichia coli (EHEC) is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (AE) lesion. Intimin, an outer membrane protein of EHEC, is required for the formation of AE lesions, as is Tir, a bacterial protein that is translocated into the host cell to function as a receptor for intimin. We established a yeast two‐hybrid assay for intimin–Tir interaction and, after random mutagenesis, isolated 24 point mutants in intimin, which disrupted Tir recognition in this system. Analysis of 11 point mutants revealed a correlation between recognition of recombinant Tir and the ability to trigger AE lesions. Many of the mutations fell within a 50‐residue region near the C‐terminus of intimin. Alanine‐scanning mutagenesis of this region revealed four residues (Ser890, Thr909, Asn916 and Asn927) that are critical for Tir recognition. Mapping the sequences of EHEC intimin and Tir onto the crystal structure of the intimin–Tir complex of enteropathogenic E. coli predicts that each of these four intimin residues lies at the intimin–Tir interface and contributes to a pocket that interacts with Ile298 of EHEC Tir. Thus, this genetic approach to intimin function both identified residues critical for Tir binding and demonstrated a correlation between the ability to bind Tir and the ability to trigger actin focusing.
Frontiers in Microbiology | 2011
Michael John Brady; Padhma Radhakrishnan; Hui Liu; Loranne Magoun; Kenan C. Murphy; Jean Mukherjee; Arthur Donohue-Rolfe; Saul Tzipori; John M. Leong
Upon intestinal colonization, enterohemorrhagic Escherichia coli (EHEC) induces epithelial cells to generate actin “pedestals” beneath bound bacteria, lesions that promote colonization. To induce pedestals, EHEC utilizes a type III secretion system to translocate into the mammalian cell bacterial effectors such as translocated intimin receptor (Tir), which localizes in the mammalian cell membrane and functions as a receptor for the bacterial outer membrane protein intimin. Whereas EHEC triggers efficient pedestal formation during mammalian infection, EHEC cultured in vitro induces pedestals on cell monolayers with relatively low efficiency. To determine whether growth within the mammalian host enhances EHEC pedestal formation, we compared in vitro-cultivated bacteria with EHEC directly isolated from infected piglets. Mammalian adaptation by EHEC was associated with a dramatic increase in the efficiency of cell attachment and pedestal formation. The amounts of intimin and Tir were significantly higher in host-adapted than in in vitro-cultivated bacteria, but increasing intimin or Tir expression, or artificially increasing the level of bacterial attachment to mammalian cells, did not enhance pedestal formation by in vitro-cultivated EHEC. Instead, a functional assay suggested that host-adapted EHEC translocate Tir much more efficiently than does in vitro-cultivated bacteria. These data suggest that adaptation of EHEC to the mammalian intestine enhances bacterial cell attachment, expression of intimin and Tir, and translocation of effectors that promote actin signaling.
Frontiers in Microbiology | 2012
Emily Mallick; Michael John Brady; Steven A. Luperchio; Vijay K. Vanguri; Loranne Magoun; Hui Liu; Barbara J. Sheppard; Jean Mukherjee; Arthur Donohue-Rolfe; Saul Tzipori; John M. Leong; David B. Schauer
Upon binding to intestinal epithelial cells, enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium trigger formation of actin pedestals beneath bound bacteria. Pedestal formation has been associated with enhanced colonization, and requires intimin, an adhesin that binds to the bacterial effector translocated intimin receptor (Tir), which is translocated to the host cell membrane and promotes bacterial adherence and pedestal formation. Intimin has been suggested to also promote cell adhesion by binding one or more host receptors, and allelic differences in intimin have been associated with differences in tissue and host specificity. We assessed the function of EHEC, EPEC, or C. rodentium intimin, or a set of intimin derivatives with varying Tir-binding abilities in animal models of infection. We found that EPEC and EHEC intimin were functionally indistinguishable during infection of gnotobiotic piglets by EHEC, and that EPEC, EHEC, and C. rodentium intimin were functionally indistinguishable during infection of C57BL/6 mice by C. rodentium. A derivative of EHEC intimin that bound Tir but did not promote robust pedestal formation on cultured cells was unable to promote C. rodentium colonization of conventional mice, indicating that the ability to trigger actin assembly, not simply to bind Tir, is required for intimin-mediated intestinal colonization. Interestingly, streptomycin pre-treatment of mice eliminated the requirement for Tir but not intimin during colonization, and intimin derivatives that were defective in Tir-binding still promoted colonization of these mice. These results indicate that EPEC, EHEC, and C. rodentium intimin are functionally interchangeable during infection of gnotobiotic piglets or conventional C57BL/6 mice, and that whereas the ability to trigger Tir-mediated pedestal formation is essential for colonization of conventional mice, intimin provides a Tir-independent activity during colonization of streptomycin pre-treated mice.