Loredana Bury
University of Perugia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Loredana Bury.
Blood | 2011
Luca Cecchetti; Neal D. Tolley; Noemi Michetti; Loredana Bury; Andrew S. Weyrich; Paolo Gresele
Megakaryocytes transfer a diverse and functional transcriptome to platelets during the final stages of thrombopoiesis. In platelets, these transcripts reflect the expression of their corresponding proteins and, in some cases, serve as a template for translation. It is not known, however, if megakaryocytes differentially sort mRNAs into platelets. Given their critical role in vascular remodeling and inflammation, we determined whether megakaryocytes selectively dispense transcripts for matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) into platelets. Next-generation sequencing (RNA-Seq) revealed that megakaryocytes express mRNA for 10 of the 24 human MMP family members. mRNA for all of these MMPs are present in platelets with the exception of MMP-2, 14, and 15. Megakaryocytes and platelets also express mRNA for TIMPs 1-3, but not TIMP-4. mRNA expression patterns predicted the presence and, in most cases, the abundance of each corresponding protein. Nonetheless, exceptions were observed: MMP-2 protein is present in platelets but not its transcript. In contrast, quiescent platelets express TIMP-2 mRNA but only traces of TIMP-2 protein. In response to activating signals, however, platelets synthesize significant amounts of TIMP-2 protein. These results demonstrate that megakaryocytes differentially express mRNAs for MMPs and TIMPs and selectively transfer a subset of these into platelets. Among the platelet messages, TIMP-2 serves as a template for signal-dependent translation.
Journal of Thrombosis and Haemostasis | 2014
Paolo Gresele; Paul Harrison; Loredana Bury; Emanuela Falcinelli; Christian Gachet; Catherine P. M. Hayward; Dermot Kenny; Diego Mezzano; Andrew D Mumford; Diane J. Nugent; Alan T. Nurden; S. Orsini; Marco Cattaneo
Diagnosis of inherited platelet function disorders (IPFDs) is important for appropriate management and to improve epidemiologic and clinical knowledge. However, there remains a lack of consensus on the diagnostic approach.
Blood | 2016
Ilenia Simeoni; Jonathan Stephens; Fengyuan Hu; Sri V.V. Deevi; Karyn Megy; Tadbir K. Bariana; Claire Lentaigne; Sol Schulman; Suthesh Sivapalaratnam; Minka J.A. Vries; Sarah K. Westbury; Daniel Greene; Sofia Papadia; Marie Christine Alessi; Antony P. Attwood; Matthias Ballmaier; Gareth Baynam; Emilse Bermejo; Marta Bertoli; Paul F. Bray; Loredana Bury; Marco Cattaneo; Peter William Collins; Louise C. Daugherty; Rémi Favier; Deborah L. French; Bruce Furie; Michael Gattens; Manuela Germeshausen; Cedric Ghevaert
Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.
Haematologica | 2014
Patrizia Noris; Nicole Schlegel; Catherine Klersy; Paula G. Heller; Elisa Civaschi; Nuria Pujol-Moix; Fabrizio Fabris; Rémi Favier; Paolo Gresele; Véronique Latger-Cannard; Adam Cuker; Paquita Nurden; Andreas Greinacher; Marco Cattaneo; Erica De Candia; Alessandro Pecci; Marie-Françoise Hurtaud-Roux; Ana C. Glembotsky; Eduardo Muñiz-Diaz; Maria Luigia Randi; Nathalie Trillot; Loredana Bury; Thomas Lecompte; Caterina Marconi; Anna Savoia; Carlo L. Balduini; Sophie Bayart; Anne Bauters; Schéhérazade Benabdallah-Guedira; Françoise Boehlen
Pregnancy in women with inherited thrombocytopenias is a major matter of concern as both the mothers and the newborns are potentially at risk of bleeding. However, medical management of this condition cannot be based on evidence because of the lack of consistent information in the literature. To advance knowledge on this matter, we performed a multicentric, retrospective study evaluating 339 pregnancies in 181 women with 13 different forms of inherited thrombocytopenia. Neither the degree of thrombocytopenia nor the severity of bleeding tendency worsened during pregnancy and the course of pregnancy did not differ from that of healthy subjects in terms of miscarriages, fetal bleeding and pre-term births. The degree of thrombocytopenia in the babies was similar to that in the mother. Only 7 of 156 affected newborns had delivery-related bleeding, but 2 of them died of cerebral hemorrhage. The frequency of delivery-related maternal bleeding ranged from 6.8% to 14.2% depending on the definition of abnormal blood loss, suggesting that the risk of abnormal blood loss was increased with respect to the general population. However, no mother died or had to undergo hysterectomy to arrest bleeding. The search for parameters predicting delivery-related bleeding in the mother suggested that hemorrhages requiring blood transfusion were more frequent in women with history of severe bleedings before pregnancy and with platelet count at delivery below 50 × 109/L.
Haematologica | 2016
Loredana Bury; Emanuela Falcinelli; Davide Chiasserini; Timothy A. Springer; Joseph E. Italiano; Paolo Gresele
Several patients have been reported to have variant dominant forms of Glanzmann thrombasthenia, associated with macrothrombocytopenia and caused by gain-of-function mutations of ITGB3 or ITGA2B leading to reduced surface expression and constitutive activation of integrin αIIbβ3. The mechanisms leading to a bleeding phenotype of these patients have never been addressed. The aim of this study was to unravel the mechanism by which ITGB3 mutations causing activation of αIIbβ3 lead to platelet dysfunction and macrothrombocytopenia. Using platelets from two patients carrying the β3 del647-686 mutation and Chinese hamster ovary cells expressing different αIIbβ3-activating mutations, we showed that reduced surface expression of αIIbβ3 is due to receptor internalization. Moreover, we demonstrated that permanent triggering of αIIbβ3-mediated outside-in signaling causes an impairment of cytoskeletal reorganization arresting actin turnover at the stage of polymerization. The induction of actin polymerization by jasplakinolide, a natural toxin that promotes actin nucleation and prevents depolymerization of stress fibers, in control platelets produced an impairment of platelet function similar to that of patients with variant forms of dominant Glanzmann thrombasthenia. del647-686β3-transduced murine megakaryocytes generated proplatelets with a reduced number of large tips and asymmetric barbell-proplatelets, suggesting that impaired cytoskeletal rearrangement is the cause of macrothrombocytopenia. These data show that impaired cytoskeletal remodeling caused by a constitutively activated αIIbβ3 is the main effector of platelet dysfunction and macrothrombocytopenia, and thus of bleeding, in variant forms of dominant Glanzmann thrombasthenia.
Seminars in Thrombosis and Hemostasis | 2016
Paolo Gresele; Loredana Bury; Emanuela Falcinelli
Inherited platelet function disorders (IPFDs) manifest with mucocutaneous bleeding and are frequently difficult to diagnose due to their heterogeneity, the complexity of the platelet activation pathways and a lack of standardization of the platelet function laboratory assays and of their use for this purpose. A rational diagnostic approach to IPFDs should follow an algorithm where clinical examination and a stepwise laboratory evaluation play a crucial role. A streamlined panel of laboratory tests, with consecutive steps of increasing level of complexity, allows the phenotypic characterization of most IPFDs. A first-line diagnosis of a significant fraction of the IPFD may be made also at nonspecialized centers by using relatively simple tests, including platelet count, peripheral blood smear, light transmission aggregometry, measurement of platelet granule content and release, and the expression of glycoproteins by flow cytometry. Some of the most complex, second- and third-step tests may be performed only in highly specialized laboratories. Genotyping, including the widespread application of next-generation sequencing, has enabled discovery in the last few years of several novel genes associated with platelet disorders and this method may eventually become a first-line diagnostic approach; however, a preliminary clinical and laboratory phenotypic characterization nowadays still remains crucial for diagnosis of IPFDs.
Haematologica | 2008
Paolo Gorello; Lucia Brandimarte; Roberta La Starza; Valentina Pierini; Loredana Bury; Roberto Rosati; Massimo F. Martelli; Peter Vandenberghe; Iwona Wlodarska; Cristina Mecucci
This paper describes molecular cytogenetic findings of a t(3;11)(q12;p15), characterized as a new NUP98 translocation rearranging with LOC348801 at chromosome 3, in a patient with acute myeloid leukemia. In a case of acute myeloid leukemia we report molecular cytogenetic findings of a t(3;11)(q12;p15), characterized as a new NUP98 translocation rearranging with LOC348801 at chromosome 3. NUP98 involvement was detected by fluorescence in situ hybridization. 3’-RACE-PCR showed nucleotide 1718 (exon 13) of NUP98 was fused in-frame with nucleotide 1248 (exon 2) of LOC348801. RT-PCR and cloning experiments detected two in-frame spliced NUP98-LOC348801 transcripts and the reciprocal LOC348801-NUP98. A highly specific double-color double-fusion FISH assay reliably detects NUP98-LOC348801.
American Journal of Physiology-heart and Circulatory Physiology | 2011
Silvia Giannini; Emanuela Falcinelli; Loredana Bury; Giuseppe Guglielmini; Roberta Rossi; Stefania Momi; Paolo Gresele
Activated platelets express CD40L on their plasma membrane and release the soluble fragment sCD40L. The interaction between platelet surface CD40L and endothelial cell CD40 leads to the activation of endothelium contributing to atherothrombosis. Few studies have directly demonstrated an increased expression of platelet CD40L in conditions of in vivo platelet activation in humans, and no data are available on its relevance for endothelial activation. We aimed to assess whether platelets activated in vivo at a localized site of vascular injury in humans express CD40L and release sCD40L, whether the level of platelet CD40L expression attained in vivo is sufficient to induce endothelial activation, and whether platelet CD40L expression is inhibited by aspirin intake. We used the skin-bleeding-time test as a model to study the interaction between platelets and a damaged vessel wall by measuring CD40L in the blood emerging from a skin wound in vivo in healthy volunteers. In some experiments, shed blood was analyzed before and 1 h after the intake of 500 mg of aspirin. Platelets from the bleeding-time blood express CD40L and release soluble sCD40L, in a time-dependent way. In vivo platelet CD40L expression was mild but sufficient to induce VCAM-1 expression and IL-8 secretion in coincubation experiments with cultured human endothelial cells. Moreover, platelets recovered from the bleeding-time blood activated endothelial cells; an anti-CD40L antibody blocked this effect. On the contrary, the amount of sCD40L released by activated platelets at a localized site of vascular injury did not reach the concentrations required to induce endothelial cell activation. Soluble monocyte chemoattractant protein-1, a marker of endothelium activation, was increased in shed blood and correlated with platelet CD40L expression. Aspirin intake did not inhibit CD40L expression by platelets in vivo. We concluded that CD40L expressed by platelets in vivo in humans upon contact with a damaged vessel wall activates endothelium; aspirin treatment does not inhibit this mechanism.
Blood | 2017
Manuela Sebastiano; Stefania Momi; Emanuela Falcinelli; Loredana Bury; Marc Hoylaerts; Paolo Gresele
Platelets contain and release several matrix metalloproteinases (MMPs). Among these, active MMP-2 enhances platelet aggregation by favoring the activation of phosphatidylinositol 3- kinase (PI3K) and contributes to arterial thrombosis. The platelet surface target of MMP-2 and the mechanism through which it primes platelets to respond to subsequent stimuli are still unknown. We show that active MMP-2 enhances platelet activation induced by weak stimuli by cleaving PAR1 at a noncanonical extracellular site different from the thrombin-cleavage site and thus initiates biased receptor signaling, triggering only some of the signaling pathways normally activated by full PAR1 agonism. The novel PAR1-tethered ligand exposed by MMP-2 stimulates PAR1-dependent Gq and G12/13 pathway activation, triggering p38-MAPK phosphorylation, Ca+2 fluxes, and PI3K activation, but not Gi signaling; this is insufficient to cause platelet aggregation, but it is enough to predispose platelets to fully respond to Gi-activating stimuli. Integrin αIIbβ3 is a necessary cofactor for PAR1 cleavage by MMP-2 by binding the MMP-2 hemopexin domain, thus favoring the interaction of the enzyme with PAR1. Our studies unravel a novel mechanism regulating platelet activation that involves the binding of MMP-2 to integrin αIIbβ3 and the subsequent cleavage of PAR1 by active MMP-2 at a noncanonical site, exposing a previously undescribed tethered ligand that triggers biased G-protein agonism and thus predisposes platelets to full activation by other stimuli. These results identify the MMP-2-αIIbβ3-PAR1 interaction as a potential target for the prevention of arterial thrombosis.
British Journal of Haematology | 2015
Elisa Civaschi; Catherine Klersy; Federica Melazzini; Nuria Pujol-Moix; Cristina Santoro; Marco Cattaneo; Cécile Lavenu-Bombled; Loredana Bury; Pietro Minuz; Paquita Nurden; Ana Rosa Cid; Adam Cuker; Véronique Latger-Cannard; Rémi Favier; Ilaria Nichele; Patrizia Noris
This study evaluated 65 pregnancies in 34 women with five different inherited platelet function disorders. Gestation was similar to that of the general population. Severe bleeds requiring blood transfusions were observed in 50% of deliveries in Glanzmann thrombasthenia (GT), but not in the patients with delta storage pool disease, Hermansky‐Pudlak syndrome, P2Y12 defect or defect of thromboxane A2 receptor. Of note, severe haemorrhage also occurred in women with GT who had received prophylactic platelet transfusions, suggesting that better preventive treatments are required. Diagnosis and degree of spontaneous bleeding tendency before pregnancy were reliable parameters to predict the delivery‐related bleeding risk.