Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loredana G. Bucciarelli is active.

Publication


Featured researches published by Loredana G. Bucciarelli.


American Journal of Pathology | 2003

RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy.

Thoralf Wendt; Nozomu Tanji; Jiancheng Guo; Thomas Kislinger; Wu Qu; Yan Lu; Loredana G. Bucciarelli; Ling Ling Rong; Bernhard Moser; Glen S. Markowitz; Gunther Stein; Angelika Bierhaus; Birgit Liliensiek; Bernd Arnold; Peter P. Nawroth; David M. Stern; Ann Marie Schmidt

Diabetic nephropathy ensues from events involving earliest changes in the glomeruli and podocytes, followed by accumulation of extracellular matrix in the mesangium. Postulated mechanisms include roles for vascular endothelial growth factor (VEGF), produced by podocytes and contributing to enhanced excretion of urinary albumin and recruitment/activation of inflammatory cells, and transforming growth factor-beta (TGF-beta), elicited largely from mesangial cells and driving production of extracellular matrix. RAGE, a receptor for advanced glycation endproducts (AGEs) and S100/calgranulins, displays enhanced expression in podocytes of genetically diabetic db/db mice by age 13 weeks. RAGE-bearing podocytes express high levels of VEGF by this time, in parallel with enhanced recruitment of mononuclear phagocytes to the glomeruli; events prevented by blockade of RAGE. By age 27 weeks, soluble RAGE-treated db/db mice displayed diminished albuminuria and glomerulosclerosis, and improved renal function. Diabetic homozygous RAGE null mice failed to develop significantly increased mesangial matrix expansion or thickening of the glomerular basement membrane. We propose that activation of RAGE contributes to expression of VEGF and enhanced attraction/activation of inflammatory cells in the diabetic glomerulus, thereby setting the stage for mesangial activation and TGF-beta production; processes which converge to cause albuminuria and glomerulosclerosis.


Circulation | 2002

RAGE Blockade Stabilizes Established Atherosclerosis in Diabetic Apolipoprotein E–Null Mice

Loredana G. Bucciarelli; Thoralf Wendt; Wu Qu; Yan Lu; Evanthia Lalla; Ling Ling Rong; Mouza T. Goova; Bernhard Moser; Thomas Kislinger; Daniel C. Lee; Yogita Kashyap; David M. Stern; Ann Marie Schmidt

Background—Previous studies suggested that blockade of RAGE in diabetic apolipoprotein (apo) E–null mice suppressed early acceleration of atherosclerosis. A critical test of the potential applicability of RAGE blockade to clinical settings was its ability to impact established vascular disease. In this study, we tested the hypothesis that RAGE contributed to lesion progression in established atherosclerosis in diabetic apoE-null mice. Methods and Results—Male apoE-null mice, age 6 weeks, were rendered diabetic with streptozotocin or treated with citrate buffer. At age 14 weeks, certain mice were killed or treated with once-daily murine soluble RAGE or albumin; all mice were killed at age 20 weeks. Compared with diabetic mice at age 14 weeks, albumin-treated animals displayed increased atherosclerotic lesion area and complexity. In diabetic mice treated with sRAGE from age 14 to 20 weeks, lesion area and complexity were significantly reduced and not statistically different from those observed in diabetic mice at age 14 weeks. In parallel, decreased parameters of inflammation and mononuclear phagocyte and smooth muscle cell activation were observed. Conclusions—RAGE contributes not only to accelerated lesion formation in diabetic apoE-null mice but also to lesion progression. Blockade of RAGE may be a novel strategy to stabilize atherosclerosis and vascular inflammation in established diabetes.


American Journal of Pathology | 2001

Blockade of Receptor for Advanced Glycation End- Products Restores Effective Wound Healing in Diabetic Mice

Mouza T. Goova; Jun Li; Thomas Kislinger; Wu Qu; Yan Lu; Loredana G. Bucciarelli; Sarah Nowygrod; Bonnie M. Wolf; Xzabia Caliste; Shi Fang Yan; David M. Stern; Ann Marie Schmidt

Receptor for advanced glycation end-products (RAGE), and two of its ligands, AGE and EN-RAGEs (members of the S100/calgranulin family of pro-inflammatory cytokines), display enhanced expression in slowly resolving full-thickness excisional wounds developed in genetically diabetic db+/db+ mice. We tested the concept that blockade of RAGE, using soluble(s) RAGE, the extracellular ligand-binding domain of the receptor, would enhance wound closure in these animals. Administration of sRAGE accelerated the development of appropriately limited inflammatory cell infiltration and activation in wound foci. In parallel with accelerated wound closure at later times, blockade of RAGE suppressed levels of cytokines; tumor necrosis factor-alpha; interleukin-6; and matrix metalloproteinases-2, -3, and -9. In addition, generation of thick, well-vascularized granulation tissue was enhanced, in parallel with increased levels of platelet-derived growth factor-B and vascular endothelial growth factor. These findings identify a central role for RAGE in disordered wound healing associated with diabetes, and suggest that blockade of this receptor might represent a targeted strategy to restore effective wound repair in this disorder.


Genes and Immunity | 2002

RAGE and arthritis: The G82S polymorphism amplifies the inflammatory response

Marion A. Hofmann; S Drury; B. I. Hudson; M R Gleason; Wu Qu; Yan Lu; Evanthia Lalla; S Chitnis; J Monteiro; Max H. Stickland; Loredana G. Bucciarelli; Bernhard Moser; G Moxley; Silviu Itescu; Peter J. Grant; Peter K. Gregersen; David M. Stern; Ann Marie Schmidt

The receptor for advanced glycation end products (RAGE) and its proinflammatory S100/calgranulin ligands are enriched in joints of subjects with rheumatoid arthritis (RA) and amplify the immune/inflammatory response. In a model of inflammatory arthritis, blockade of RAGE in mice immunized and challenged with bovine type II collagen suppressed clinical and histologic evidence of arthritis, in parallel with diminished levels of TNF-alpha, IL-6, and matrix metalloproteinases (MMP) 3, 9 and 13 in affected tissues. Allelic variation within key domains of RAGE may influence these proinflammatory mechanisms, thereby predisposing individuals to heightened inflammatory responses. A polymorphism of the RAGE gene within the ligand-binding domain of the receptor has been identified, consisting of a glycine to serine change at position 82. Cells bearing the RAGE 82S allele displayed enhanced binding and cytokine/MMP generation following ligation by a prototypic S100/calgranulin compared with cells expressing the RAGE 82G allele. In human subjects, a case-control study demonstrated an increased prevalence of the 82S allele in patients with RA compared with control subjects. These data suggest that RAGE 82S upregulates the inflammatory response upon engagement of S100/calgranulins, and, thereby, may contribute to enhanced proinflammatory mechanisms in immune/inflammatory diseases.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Oral Infection With a Periodontal Pathogen Accelerates Early Atherosclerosis in Apolipoprotein E–Null Mice

Evanthia Lalla; Ira B. Lamster; Marion A. Hofmann; Loredana G. Bucciarelli; Adrienne P. Jerud; Sid Tucker; Yan Lu; Panos N. Papapanou; Ann Marie Schmidt

Objective—Because recent epidemiologic evidence suggests that periodontal infections may increase the risk of atherosclerosis and related events in humans, we assessed the impact of oral inoculation with the periodontal pathogen Porphyromonas gingivalis on atherogenesis in hypercholesterolemic apolipoprotein E–null mice. Methods and Results—In the absence of alterations in distinct risk factors, P gingivalis infection exacerbated the early stages of atherogenesis in this model. Infected animals displayed evidence of local periodontal infection, as the severity of alveolar bone loss, the hallmark of periodontitis, was increased. Generalized activation of host inflammatory responses was evident in infected mice, as demonstrated by serum IgG response to P gingivalis and elevated levels of interleukin-6. P gingivalis DNA was localized in the aortic tissue from a limited number of infected mice but not in any noninfected controls. Infected mice displayed enhanced vascular activation, as suggested by increased aortic expression of vascular cell adhesion molecule-1 and tissue factor. Conclusions—Oral infection with P gingivalis accelerates early atherosclerosis. Thus, uncovering the underlying mechanisms is critical for the design of preventive and therapeutic strategies targeting atherosclerotic vascular disease and its sequelae.


Cellular and Molecular Life Sciences | 2002

RAGE is a multiligand receptor of the immunoglobulin superfamily: Implications for homeostasis and chronic disease

Loredana G. Bucciarelli; Thoralf Wendt; Ling Ling Rong; Evanthia Lalla; Marion A. Hofmann; Mouza T. Goova; Akihiko Taguchi; Shi-Fang Yan; Shi Du Yan; David M. Stern; Ann Marie Schmidt

Abstract: Receptor for AGE (RAGE) is a member of the immunoglobulin superfamily that engages distinct classes of ligands. The biology of RAGE is driven by the settings in which these ligands accumulate, such as diabetes, inflammation, neurodegenerative disorders and tumors. In this review, we discuss the context of each of these classes of ligands, including advance glycation endproducts, amyloid β peptide and the family of β sheet fibrils, S100/calgranulins and amphoterin. Implications for the role of these ligands interacting with RAGE in homeostasis and disease will be considered.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2001

Receptor for Advanced Glycation End Products Mediates Inflammation and Enhanced Expression of Tissue Factor in Vasculature of Diabetic Apolipoprotein E–Null Mice

Thomas Kislinger; Nozomu Tanji; Thoralf Wendt; Wu Qu; Yan Lu; Luis J. Ferran; Akihiko Taguchi; Kim Olson; Loredana G. Bucciarelli; Mouza T. Goova; Marion Hofmann; Guellue Cataldegirmen; Vivette D’Agati; Monika Pischetsrieder; David M. Stern; Ann Marie Schmidt

Abstract—Advanced glycation end products (AGEs) and their cell surface receptor, RAGE, have been implicated in the pathogenesis of diabetic complications. Here, we studied the role of RAGE and expression of its proinflammatory ligands, EN-RAGEs (S100/calgranulins), in inflammatory events mediating cellular activation in diabetic tissue. Apolipoprotein E– null mice were rendered diabetic with streptozotocin at 6 weeks of age. Compared with nondiabetic aortas and kidneys, diabetic aortas and kidneys displayed increased expression of RAGE, EN-RAGEs, and 2 key markers of vascular inflammation, vascular cell adhesion molecule (VCAM)-1 and tissue factor. Administration of soluble RAGE, the extracellular domain of the receptor, or vehicle to diabetic mice for 6 weeks suppressed levels of VCAM-1 and tissue factor in the aorta, in parallel with decreased expression of RAGE and EN-RAGEs. Diabetic kidney demonstrated increased numbers of EN-RAGE–expressing inflammatory cells infiltrating the glomerulus and enhanced mRNA for transforming growth factor-&bgr;, fibronectin, and &agr; 1 (IV) collagen. In mice treated with soluble RAGE, the numbers of infiltrating inflammatory cells and mRNA levels for these glomerular cytokines and components of extracellular matrix were decreased. These data suggest that activation of RAGE primes cells targeted for perturbation in diabetic tissues by the induction of proinflammatory mediators.


Circulation | 2006

Receptor for Advanced-Glycation End Products Key Modulator of Myocardial Ischemic Injury

Loredana G. Bucciarelli; Michiyo Kaneko; Radha Ananthakrishnan; Evis Harja; Larisse K. Lee; Yuying C. Hwang; Shulamit Lerner; Soliman Bakr; Qing Li; Yan Lu; Fei Song; Wu Qu; Teodoro Gomez; Yu Shan Zou; Shi Fang Yan; Ann Marie Schmidt; Ravichandran Ramasamy

Background— The beneficial effects of reperfusion therapies have been limited by the amount of ischemic damage that occurs before reperfusion. To enable development of interventions to reduce cell injury, our research has focused on understanding mechanisms involved in cardiac cell death after ischemia/reperfusion (I/R) injury. In this context, our laboratory has been investigating the role of the receptor for advanced-glycation end products (RAGE) in myocardial I/R injury. Methods and Results— In this study we tested the hypothesis that RAGE is a key modulator of I/R injury in the myocardium. In ischemic rat hearts, expression of RAGE and its ligands was significantly enhanced. Pretreatment of rats with sRAGE, a decoy soluble part of RAGE receptor, reduced ischemic injury and improved functional recovery of myocardium. To specifically dissect the impact of RAGE, hearts from homozygous RAGE-null mice were isolated, perfused, and subjected to I/R. RAGE-null mice were strikingly protected from the adverse impact of I/R injury in the heart, as indicated by decreased release of LDH, improved functional recovery, and increased adenosine triphosphate (ATP). In rats and mice, activation of the RAGE axis was associated with increases in inducible nitric oxide synthase expression and levels of nitric oxide, cyclic guanosine monophosphate (cGMP), and nitrotyrosine. Conclusions— These findings demonstrate novel and key roles for RAGE in I/R injury in the heart. The findings also demonstrate that the interaction of RAGE with advanced-glycation end products affects myocardial energy metabolism and function during I/R.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

RAGE axis: Animal models and novel insights into the vascular complications of diabetes

Yoshifumi Naka; Loredana G. Bucciarelli; Thoralf Wendt; Larisse Lee; Ling Ling Rong; Ravichandran Ramasamy; Shi Fang Yan; Ann Marie Schmidt

Receptor for AGE (RAGE) is a multi-ligand member of the immunoglobulin superfamily of cell surface molecules. Engagement of RAGE by its signal transduction ligands evokes inflammatory cell infiltration and activation in the vessel wall. In diabetes, when fueled by oxidant stress, hyperglycemia, and superimposed stresses such as hyperlipidemia or acute balloon/endothelial denuding arterial injury, the ligand–RAGE axis amplifies vascular stress and accelerates atherosclerosis and neointimal expansion. In this brief synopsis, we review the use of rodent models to test these concepts. Taken together, our findings support the premise that RAGE is an amplification step in vascular inflammation and acceleration of atherosclerosis. Future studies must rigorously test the potential impact of RAGE blockade in human subjects; such trials are on the horizon.


The FASEB Journal | 2004

RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways

Ling Ling Rong; Shi-Fang Yan; Thoralf Wendt; Diana Hans; Sophia Pachydaki; Loredana G. Bucciarelli; Adebukola Adebayo; Wu Qu; Yan Lu; Konstantin Kostov; Evanthia Lalla; Shi Du Yan; Clifton L. Gooch; Matthias Szabolcs; Werner Trojaborg; Arthur P. Hays; Ann Marie Schmidt

Axotomy of peripheral nerve stimulates events in multiple cell types that initiate a limited inflammatory response to axonal degeneration and simultaneous outgrowth of neurites into the distal segments after injury. We found that pharmacological blockade of RAGE impaired peripheral nerve regeneration in mice subjected to RAGE blockade and acute crush of the sciatic nerve. As our studies revealed that RAGE was expressed in axons and in infiltrating mononuclear phagocytes upon injury, we tested the role of RAGE in these distinct cell types on nerve regeneration. Transgenic mice expressing signal transduction‐deficient RAGE in mononuclear phagocytes or peripheral neurons were generated and subjected to unilateral crush injury to the sciatic nerve. Transgenic mice displayed decreased functional and morphological recovery compared with littermate controls, as assessed by motor and sensory conduction velocities;and myelinated fiber density. In double transgenic mice expressing signal transduction deficient RAGE in both mononuclear phagocytes and peripheral neurons, regeneration was even further impaired, suggesting the critical interplay between RAGE‐modulated inflammation and neurite outgrowth in nerve repair. These findings suggest that RAGE signaling in inflammatory cells and peripheral neurons plays an important role in plasticity of the peripheral nervous system.—Rong, L. L., Yan, S.‐F., Wendt, T., Hans, D., Pachydaki, S., Bucciarelli, L. G., Adebayo, A., Qu, W., Lu, Y., Kostov, K., Lalla, E., Yan, S. D., Gooch, C., Szabolcs, M., Trojaborg, W., Hays, A. P.,Schmidt, A. M. RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways. FASEB J. 18, 1818–1825 (2004)

Collaboration


Dive into the Loredana G. Bucciarelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Lu

Columbia University

View shared research outputs
Top Co-Authors

Avatar

Wu Qu

Columbia University

View shared research outputs
Top Co-Authors

Avatar

David M. Stern

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge