Lorella Paparo
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorella Paparo.
The ISME Journal | 2016
Roberto Berni Canani; Naseer Sangwan; Andrew Stefka; Rita Nocerino; Lorella Paparo; Rosita Aitoro; Antonio Calignano; Aly A. Khan; Jack A. Gilbert; Cathryn R. Nagler
Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow’s milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.
Nutrients | 2014
Lorella Paparo; Margherita Di Costanzo; Carmen Di Scala; L. Cosenza; L. Leone; Rita Nocerino; Roberto Berni Canani
The immune system is exquisitely sensitive to environmental changes. Diet constitutes one of the major environmental factors that exerts a profound effect on immune system development and function. Epigenetics is the study of mitotically heritable, yet potentially reversible, molecular modifications to DNA and chromatin without alteration to the underlying DNA sequence. Nutriepigenomics is an emerging discipline examining the role of dietary influences on gene expression. There is increasing evidence that the epigenetic mechanisms that regulate gene expression during immune differentiation are directly affected by dietary factors or indirectly through modifications in gut microbiota induced by different dietary habits. Short-chain fatty acids, in particular butyrate, produced by selected bacteria stains within gut microbiota, are crucial players in this network.
World Journal of Gastroenterology | 2013
Martina Galatola; Erasmo Miele; Caterina Strisciuglio; Lorella Paparo; Daniela Rega; Paolo Delrio; Francesca Duraturo; Massimo Martinelli; Giovanni Battista Rossi; Annamaria Staiano; Paola Izzo; Marina De Rosa
AIM To investigated the molecular cause of very early-onset ulcerative colitis (UC) in an 18-mo-old affected child. METHODS We analysed the interleukin-10 (IL10) receptor genes at the DNA and RNA level in the proband and his relatives. Beta catenin and tumor necrosis factor-α (TNFα) receptors were analysed in the proteins extracted from peripheral blood cells of the proband, his relatives and familial adenomatous polyposis (FAP) and PTEN hamartoma tumor syndrome (PHTS) patients. Samples were also collected from the probands inflamed colorectal mucosa and compared to healthy and tumour mucosa collected from a FAP patient and patients affected by sporadic colorectal cancer (CRC). Finally, we examined mesalazine and azathioprine effects on primary fibroblasts stabilised from UC and FAP patients. RESULTS Our patient was a compound heterozygote for the IL10RB E47K polymorphism, inherited from his father, and for a novel point mutation within the IL10RA promoter (the -413G->T), inherited from his mother. Beta catenin and tumour necrosis factor α receptors-I (TNFRI) protein were both over-expressed in peripheral blood cells of the probands relatives more than the proband. However, TNFRII was over-expressed only in the proband. Finally, both TNFα-receptors were shown to be under-expressed in the inflamed colon mucosa and colorectal cancer tissue compared to healthy colon mucosa. Consistent with this observation, mesalazine and azathioprine induced, in primary fibroblasts, IL10RB and TNFRII over-expression and TNFRI and TNFα under-expression. We suggest that β-catenin and TNFRI protein expression in peripheral blood cells could represent molecular markers of sub-clinical disease in apparently healthy relatives of patients with early-onset UC. CONCLUSION A synergistic effect of several variant alleles of the IL10 receptor genes, inherited in a Mendelian manner, is involved in UC onset in this young child.
Beneficial Microbes | 2015
L. Cosenza; Rita Nocerino; C. Di Scala; M. Di Costanzo; Antonio Amoroso; L. Leone; Lorella Paparo; C. Pezzella; Rosita Aitoro; R. Berni Canani
Food allergy (FA) is a major health issue for children living in Western countries. At this time the only proven treatment for FA is elimination of offender antigen from the diet. It is becoming clear that the development of gut microbiota exerts a profound influence on immune system maturation and tolerance acquisition. Increasing evidence suggests that perturbations in gut microbiota composition of infants are implicated in the pathogenesis of FA. These findings have unveiled new strategies to prevent and treat FA using probiotics bacteria or bacterial substance to limit T-helper (Th)/Th2 bias, which changes during the disease course. Selected probiotics administered during infancy may have a role in the prevention and treatment of FA. Lactobacillus rhamnosus GG (LGG) is the most studied probiotic in this field. Administration of LGG in early life have a role in FA prevention. Preliminary evidence shows that LGG accelerates oral tolerance acquisition in cows milk allergic infants. We are understanding the mechanisms elicited by LGG and metabolites in influencing food allergen sensitization. A deeper definition of these mechanisms is opening the way to new immunotherapeutics for children affected by FA that can efficiently limit the disease burden.
Biochimica et Biophysica Acta | 2011
Alberto Angrisani; Mimmo Turano; Lorella Paparo; Concetta Di Mauro; Maria Furia
BACKGROUND The human DKC1 gene is causative of X-linked dyskeratosis congenita (X-DC), a syndrome characterized by mucocutaneous features, bone marrow failure, tumor susceptibility, perturbation of stem cell function, and premature aging. DKC1 is thought to produce a single protein, named dyskerin, which shows strict nucleolar localization and participates in at least two distinct nuclear functional complexes: the H/ACA small nucleolar ribonucleoproteic complex involved in RNA pseudouridylation and the active telomerase complex. METHODS By bioinformatics and molecular analyses we identified a DKC1 splice variant able to encode a truncated form of dyskerin, confirmed its active expression in diverse human tissues by RT-PCR, and showed by immunoblotting and immunocytochemistry experiments that it actually encodes a novel protein. Stably transfected clones over-expressing the new isoform were analyzed for growth, morphology and adhesion properties. RESULTS Our results show that DKC1 encodes a new alternatively spliced mRNA able to direct the synthesis of a variant dyskerin with unexpected cytoplasmic localization. Intriguingly, when over-expressed in HeLa cells, the new isoform promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. CONCLUSIONS AND GENERAL SIGNIFICANCE Our results highlight a novel degree of complexity and regulation of the human DKC1 gene and reveal that it can play a further, unpredicted role in cell adhesion. The identification of a dyskerin cytoplasmic variant reinforces the view that other mechanisms, in addition to telomere instability, can significantly contribute to the pathogenesis of the X-DC, and suggests that DKC1 nucleolar and cytoplasmic functions might cumulatively account for the plethora of manifestations displayed by this syndrome.
Nutrients | 2017
Rosita Aitoro; Lorella Paparo; Antonio Amoroso; Margherita Di Costanzo; L. Cosenza; Viviana Granata; Carmen Di Scala; Rita Nocerino; Giovanna Trinchese; Mariangela Montella; Danilo Ercolini; Roberto Berni Canani
The gut microbiota plays a pivotal role in immune system development and function. Modification in the gut microbiota composition (dysbiosis) early in life is a critical factor affecting the development of food allergy. Many environmental factors including caesarean delivery, lack of breast milk, drugs, antiseptic agents, and a low-fiber/high-fat diet can induce gut microbiota dysbiosis, and have been associated with the occurrence of food allergy. New technologies and experimental tools have provided information regarding the importance of select bacteria on immune tolerance mechanisms. Short-chain fatty acids are crucial metabolic products of gut microbiota responsible for many protective effects against food allergy. These compounds are involved in epigenetic regulation of the immune system. These evidences provide a foundation for developing innovative strategies to prevent and treat food allergy. Here, we present an overview on the potential role of gut microbiota as the target of intervention against food allergy.
Clinical Nutrition | 2017
Rita Nocerino; Lorella Paparo; Gianluca Terrin; Vincenza Pezzella; Antonio Amoroso; L. Cosenza; G. Cecere; Giulio De Marco; M. Micillo; Fabio Albano; Rosa Nugnes; Pasqualina Ferri; Giuseppe Ciccarelli; Giuliana Giaccio; Raffaella Spadaro; Ylenia Maddalena; Francesco Berni Canani; Roberto Berni Canani
BACKGROUND & AIM Fermented foods have been proposed for the prevention of infectious diseases. We evaluated the efficacy of fermented foods in reducing common infectious diseases (CIDs) in children attending daycare. METHODS Prospective randomized, double-blind, placebo-controlled trial (registered under Clinical Trials.gov identifier NCT01909128) on healthy children (aged 12-48 months) consuming daily cows milk (group A) or rice (group B) fermented with Lactobacillus paracasei CBA L74, or placebo (group C) for three months during the winter season. The main study outcome was the proportion of children who experienced at least one CID. All CIDs were diagnosed by family pediatricians. Fecal concentrations of innate (α- and β-defensins and cathelicidin LL-37) and acquired immunity biomarkers (secretory IgA) were also evaluated. RESULTS 377 children (193 males, 51%) with a mean (SD) age of 32 (10) months completed the study: 137 in group A, 118 in group B and 122 in group C. Intention-to-treat analysis showed that the proportion of children who experienced at least one CID was lower in group A (51.8%) and B (65.9%) compared to group C (80.3%). Per-protocol analysis showed that the proportion of children presenting upper respiratory tract infections was lower in group A (48.2%) and group B (58.5%) compared with group C (70.5%). The proportion of children presenting acute gastroenteritis was also lower in group A (13.1%) and group B (19.5%) compared with group C (31.1%). A net increase of all fecal biomarkers of innate and acquired immunity was observed for groups A and B compared to group C. Moreover, there was a negative association between fecal biomarkers and the occurrence of CID. CONCLUSION Dietary supplementation with cows milk or rice fermented with L. paracasei CBA L74 prevents CIDs in children attending daycare possibly by means of a stimulation of innate and acquired immunity.
Applied and Environmental Microbiology | 2017
Roberto Berni Canani; Francesca De Filippis; Rita Nocerino; Manolo Laiola; Lorella Paparo; Antonio Calignano; Carmen De Caro; Lorena Coretti; Lorenzo Chiariotti; Jack A. Gilbert; Danilo Ercolini
ABSTRACT We recently demonstrated that cows milk fermented with the probiotic Lactobacillus paracasei CBA L74 (FM-CBAL74) reduces the incidence of respiratory and gastrointestinal tract infections in young children attending school. This effect apparently derives from a complex regulation of non-immune and immune protective mechanisms. We investigated whether FM-CBAL74 could regulate gut microbiota composition and butyrate production. We randomly selected 20 healthy children (12 to 48 months) from the previous randomized controlled trial, before (t0) and after 3 months (t3) of dietary treatment with FM-CBAL74 (FM) or placebo (PL). Fecal microbiota was profiled using 16S rRNA gene amplicon sequencing, and the fecal butyrate concentration was also measured. Microbial alpha and beta diversities were not significantly different between groups prior to treatment. FM-CBAL74 but not PL treatment increased the relative abundance of Lactobacillus. Individual Blautia, Roseburia, and Faecalibacterium oligotypes were associated with FM-CBAL74 treatment and demonstrated correlative associations with immune biomarkers. Accordingly, PICRUSt analysis predicted an increase in the proportion of genes involved in butyrate production pathways, consistent with an increase in fecal butyrate observed only in the FM group. Dietary supplementation with FM-CBAL74 induces specific signatures in gut microbiota composition and stimulates butyrate production. These effects are associated with changes in innate and acquired immunity. IMPORTANCE The use of a fermented milk product containing the heat-killed probiotic strain Lactobacillus paracasei CBAL74 induces changes in the gut microbiota, promoting the development of butyrate producers. These changes in the gut microbiota composition correlate with increased levels of innate and acquired immunity biomarkers.
Pediatric Allergy and Immunology | 2017
Rosita Aitoro; Raffaele Simeoli; Antonio Amoroso; Lorella Paparo; Rita Nocerino; Claudio Pirozzi; Margherita Di Costanzo; Rosaria Meli; Carmen De Caro; Gianluca Picariello; Gianfranco Mamone; Antonio Calignano; Cathryn R. Nagler; Roberto Berni Canani
Extensively hydrolyzed casein formula (EHCF) has been proposed for the prevention and is commonly used for the treatment of cows milk allergy (CMA). The addition of the probiotic Lactobacillus rhamnosus GG (LGG) to EHCF may induce faster acquisition of tolerance to cows milk. The mechanisms underlying this effect are largely unexplored. We investigated the effects of EHCF alone or in combination with LGG on β‐lactoglobulin (BLG) sensitization in mice.
Nutrients | 2017
Giovanni Corsello; Maurizio Carta; Roberto Marinello; Giulio De Marco; M. Micillo; D. Ferrara; Patrizia Vigneri; G. Cecere; Pasqualina Ferri; Paola Roggero; Giorgio Bedogni; Fabio Mosca; Lorella Paparo; Rita Nocerino; Roberto Berni Canani
Background: Fermented foods have been proposed to prevent common infectious diseases (CIDs) in children attending day care or preschool. Objectives: To investigate the efficacy of dietary supplementation with cow’s skim milk fermented with the probiotic Lactobacillus paracasei CBA L74 in reducing CIDs in children attending day care or preschool. Methods: Multicenter, randomized, double-blind, placebo-controlled trial on healthy children (aged 12–48 months) consuming daily 7 grams of cow’s skim milk fermented with L. paracasei CBA L74 (group A), or placebo (maltodextrins group B) attending day care or preschool during the winter season. The main outcome was the proportion of children who experienced ≥1 episode of CID during a 3-month follow-up. Fecal biomarkers of innate (α- and β-defensins, cathelicidin) and acquired immunity (secretory IgA) were also monitored. Results: A total of 126 children (71 males, 56%) with a mean (SD) age of 33 (9) months completed the study, 66 in group A and 60 in group B. At intention to treat analysis, the proportion of children presenting ≥1 CID was 60% in group A vs. 83% in group B, corresponding to an absolute risk difference (ARD) of −23% (95% CI: −37% to −9%, p < 0.01). At per-protocol-analysis (PPA), the proportion of children presenting ≥1 CID was 18% in group A vs. 40% in group B, corresponding to an absolute risk difference (ARD) of −22% (95% CI: −37% to −6%, p < 0.01). PPA showed that the proportion of children presenting ≥1 acute gastroenteritis (AGE) was significantly lower in group A (18% vs. 40%, p < 0.05). The ARD for the occurrence of ≥1 AGE was −22% (95% CI: −37% to −6%, p < 0.01) in group A. Similar findings were obtained at PPA regarding the proportion of children presenting ≥1 upper respiratory tract infection (URTI), which was significantly lower in group A (51% vs. 74%, p < 0.05), corresponding to an ARD of −23% (95% CI: −40% to −7%, p < 0.01). Significant changes in innate and acquired immunity biomarkers were observed only in subjects in group A. Conclusions: Dietary supplementation with cow’s skim milk fermented with L. paracasei CBA L74 is an efficient strategy in preventing CIDs in children.