Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loren E. Hough is active.

Publication


Featured researches published by Loren E. Hough.


Science | 2009

Helical Nanofilament Phases

Loren E. Hough; Hee-Tae Jung; Daniel Krüerke; Michael‐Scott Heberling; Michi Nakata; Christopher D. Jones; Dong Chen; Darren R. Link; Joseph A. Zasadzinski; G. Heppke; Jürgen P. Rabe; W Stocker; Eva Korblova; David M. Walba; Matthew A. Glaser; Noel A. Clark

Packing Bananas and Boomerangs Assembling achiral molecules typically generates achiral domains. However, odd things can happen when the molecules are banana-or boomerang-shaped—their cores can twist out of plain to form left- or right-handed helices, which can then pack into chiral domains that will polarize light (see the Perspective by Amabilino). Hough et al. (p. 452) show that if you make the situation even more complex by frustrating the packing of adjacent layers, you can create a material that appears to be macroscopically isotropic with only very local positional and orientational ordering of the molecules but still shows an overall chirality. In a second paper, Hough et al. (p. 456) also show that if you change the chemistry of the molecules to allow for better overall packing, you can create a situation where helical filaments form that also tend to pack in layered structures. However, the frustration between the two types of packing leads to macroscopically chiral and mesoporous structures. Molecules lacking handedness can form layered, mesoporous helical structures. In the formation of chiral crystals, the tendency for twist in the orientation of neighboring molecules is incompatible with ordering into a lattice: Twist is expelled from planar layers at the expense of local strain. We report the ordered state of a neat material in which a local chiral structure is expressed as twisted layers, a state made possible by spatial limitation of layering to a periodic array of nanoscale filaments. Although made of achiral molecules, the layers in these filaments are twisted and rigorously homochiral—a broken symmetry. The precise structural definition achieved in filament self-assembly enables collective organization into arrays in which an additional broken symmetry—the appearance of macroscopic coherence of the filament twist—produces a liquid crystal phase of helically precessing layers.


Science | 2009

Chiral Isotropic Liquids from Achiral Molecules

Loren E. Hough; M. Spannuth; Michi Nakata; D. A. Coleman; Christopher D. Jones; Gert Dantlgraber; Carsten Tschierske; Junji Watanabe; Eva Korblova; David M. Walba; Joseph E. Maclennan; Matthew A. Glaser; Noel A. Clark

Packing Bananas and Boomerangs Assembling achiral molecules typically generates achiral domains. However, odd things can happen when the molecules are banana-or boomerang-shaped—their cores can twist out of plain to form left- or right-handed helices, which can then pack into chiral domains that will polarize light (see the Perspective by Amabilino). Hough et al. (p. 452) show that if you make the situation even more complex by frustrating the packing of adjacent layers, you can create a material that appears to be macroscopically isotropic with only very local positional and orientational ordering of the molecules but still shows an overall chirality. In a second paper, Hough et al. (p. 456) also show that if you change the chemistry of the molecules to allow for better overall packing, you can create a situation where helical filaments form that also tend to pack in layered structures. However, the frustration between the two types of packing leads to macroscopically chiral and mesoporous structures. Banana-shaped molecules lacking handedness form a macroscopically isotropic fluid that still has overall chirality. A variety of simple bent-core molecules exhibit smectic liquid crystal phases of planar fluid layers that are spontaneously both polar and chiral in the absence of crystalline order. We found that because of intralayer structural mismatch, such layers are also only marginally stable against spontaneous saddle splay deformation, which is incompatible with long-range order. This results in macroscopically isotropic fluids that possess only short-range orientational and positional order, in which the only macroscopically broken symmetry is chirality—even though the phases are formed from achiral molecules. Their conglomerate domains exhibit optical rotatory powers comparable to the highest ever found for isotropic fluids of chiral molecules.


eLife | 2015

The molecular mechanism of nuclear transport revealed by atomic-scale measurements

Loren E. Hough; Kaushik Dutta; Samuel Sparks; Deniz B. Temel; Alia Kamal; Jaclyn Tetenbaum-Novatt; Michael P. Rout; David Cowburn

Nuclear pore complexes (NPCs) form a selective filter that allows the rapid passage of transport factors (TFs) and their cargoes across the nuclear envelope, while blocking the passage of other macromolecules. Intrinsically disordered proteins (IDPs) containing phenylalanyl-glycyl (FG)-rich repeats line the pore and interact with TFs. However, the reason that transport can be both fast and specific remains undetermined, through lack of atomic-scale information on the behavior of FGs and their interaction with TFs. We used nuclear magnetic resonance spectroscopy to address these issues. We show that FG repeats are highly dynamic IDPs, stabilized by the cellular environment. Fast transport of TFs is supported because the rapid motion of FG motifs allows them to exchange on and off TFs extremely quickly through transient interactions. Because TFs uniquely carry multiple pockets for FG repeats, only they can form the many frequent interactions needed for specific passage between FG repeats to cross the NPC. DOI: http://dx.doi.org/10.7554/eLife.10027.001


Molecular & Cellular Proteomics | 2012

Nucleocytoplasmic Transport: A Role for Nonspecific Competition in Karyopherin-Nucleoporin Interactions

Jaclyn Tetenbaum-Novatt; Loren E. Hough; Roxana Mironska; Anna Sophia McKenney; Michael P. Rout

Nucleocytoplasmic transport occurs through the nuclear pore complex (NPC), which in yeast is a ∼50 MDa complex consisting of ∼30 different proteins. Small molecules can freely exchange through the NPC, but macromolecules larger than ∼40 kDa must be aided across by transport factors, most of which belong to a related family of proteins termed karyopherins (Kaps). These transport factors bind to the disordered phenylalanine-glycine (FG) repeat domains in a family of NPC proteins termed FG nups, and this specific binding allows the transport factors to cross the NPC. However, we still know little in terms of the molecular and kinetic details regarding how this binding translates to selective passage of transport factors across the NPC. Here we show that the specific interactions between Kaps and FG nups are strongly modulated by the presence of a cellular milieu whose proteins appear to act as very weak competitors that nevertheless collectively can reduce Kap/FG nup affinities by several orders of magnitude. Without such modulation, the avidities between Kaps and FG nups measured in vitro are too tight to be compatible with the rapid transport kinetics observed in vivo. We modeled the multivalent interactions between the disordered repeat binding sites in the FG nups and multiple cognate binding sites on Kap, showing that they should indeed be sensitive to even weakly binding competitors; the introduction of such competition reduces the availability of these binding sites, dramatically lowering the avidity of their specific interactions and allowing rapid nuclear transport.


Nature Methods | 2015

Rapid, optimized interactomic screening

Zhanna Hakhverdyan; Michal Domanski; Loren E. Hough; Asha A. Oroskar; Anil Oroskar; Sarah Keegan; David J. Dilworth; Kelly R. Molloy; Vadim Sherman; John D. Aitchison; David Fenyö; Brian T. Chait; Torben Heick Jensen; Michael P. Rout; John LaCava

We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screening method that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles for even well-studied proteins. Our approach is robust, economical and automatable, providing inroads to the rigorous, systematic dissection of cellular interactomes.


Soft Matter | 2011

Interface structure of the dark conglomerate liquid crystal phase

Dong Chen; Yongqiang Shen; Chenhui Zhu; Loren E. Hough; Nélida Gimeno; Matthew A. Glaser; Joseph E. Maclennan; M. Blanca Ros; Noel A. Clark

The dark conglomerate (DC) phase is the spontaneously chiral, isotropic fluid formed by achiral bent-core liquid crystal molecules characterized by well-defined local smectic liquid crystal layering deformed into a disordered “plumbers nightmare” array of 100 nm-scale, focal conic-like domains. Here we report the interface structure of this phase, showing that surface confinement orders the focal conics into a hexagonal plumbers nightmare lattice, directly confirming the topology proposed for the DC phase. The observations suggest that a bulk phase of saddle–splay dominated focal conics may be produced in DC materials under suitable conditions, which opens the way for the development of two-dimensional or even three-dimensional periodic dielectric media for photonic crystal applications.


ChemPhysChem | 2012

Structure of the B4 Liquid Crystal Phase near a Glass Surface

Dong Chen; Michael‐Scott Heberling; Michi Nakata; Loren E. Hough; Joseph E. Maclennan; Matthew A. Glaser; Eva Korblova; David M. Walba; Junji Watanabe; Noel A. Clark

The B4 liquid crystal phase of bent-core molecules, a smectic phase of helical nanofilaments, is one of the most complex hierarchical self-assemblies in soft materials. We describe the layer topology of the B4 phase of mesogens in the P-n-OPIMB homologous series near the liquid crystal/glass interface. Freeze-fracture transmission electron microscopy reveals that the twisted layer structure of the bulk is suppressed, the layers instead forming a structure with periodic layer undulations, with the topography depending on the distance from the glass. The surface layer structure is modeled as parabolic focal conic arrays generated by equidistant parabolas whose foci are defect lines along the glass surface. Nucleation and growth of toric focal conics near the glass substrate is also observed. Although the growth of twisted nanofilaments, the usual manifestation of structural chirality in the B4 phase, is suppressed near the surface, the smectic layers are intrinsically chiral, and the helical filaments that form on top of them grow with specific handedness.


Biophysical Journal | 2009

Microtubule Depolymerization by the Kinesin-8 Motor Kip3p: A Mathematical Model

Loren E. Hough; Anne Schwabe; Matthew A. Glaser; J. Richard McIntosh; M. D. Betterton

Proteins from the kinesin-8 family promote microtubule (MT) depolymerization, a process thought to be important for the control of microtubule length in living cells. In addition to this MT shortening activity, kinesin 8s are motors that show plus-end directed motility on MTs. Here we describe a simple model that incorporates directional motion and destabilization of the MT plus-end by kinesin 8. Our model quantitatively reproduces the key features of length-versus-time traces for stabilized MTs in the presence of purified kinesin 8, including length-dependent depolymerization. Comparison of model predictions with experiments suggests that kinesin 8 depolymerizes processively, i.e., one motor can remove multiple tubulin dimers from a stabilized MT. Fluctuations in MT length as a function of time are related to depolymerization processivity. We have also determined the parameter regime in which the rate of MT depolymerization is length dependent: length-dependent depolymerization occurs only when MTs are sufficiently short; this crossover is sensitive to the bulk motor concentration.


Molecular Biology of the Cell | 2016

Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

Zachary R. Gergely; Ammon Crapo; Loren E. Hough; J. Richard McIntosh; M. D. Betterton

Kinesin-8 motor proteins destabilize microtubules and increase chromosome loss in mitosis. In fission yeast, aberrant microtubule-driven kinetochore pushing movements, tripolar mitotic spindles, and fluctuations in metaphase spindle length occurred in kinesin-8–deletion mutants. A mathematical model can explain these results.


Physical Review E | 2015

Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods.

Robert Blackwell; Loren E. Hough; Matthew A. Glaser; M. D. Betterton

Nonequilibrium active matter made up of self-driven particles with short-range repulsive interactions is a useful minimal system to study active matter as the system exhibits collective motion and nonequilibrium order-disorder transitions. We studied high-aspect-ratio self-propelled rods over a wide range of packing fractions and driving to determine the nonequilibrium state diagram and dynamic properties. Flocking and nematic-laning states occupy much of the parameter space. In the flocking state, the average internal pressure is high and structural and mechanical relaxation times are long, suggesting that rods in flocks are in a translating glassy state despite overall flock motion. In contrast, the nematic-laning state shows fluidlike behavior. The flocking state occupies regions of the state diagram at both low and high packing fraction separated by nematic-laning at low driving and a history-dependent region at higher driving; the nematic-laning state transitions to the flocking state for both compression and expansion. We propose that the laning-flocking transitions are a type of glass transition that, in contrast to other glass-forming systems, can show fluidization as density increases. The fluid internal dynamics and ballistic transport of the nematic-laning state may promote collective dynamics of rod-shaped micro-organisms.

Collaboration


Dive into the Loren E. Hough's collaboration.

Top Co-Authors

Avatar

Noel A. Clark

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

M. D. Betterton

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Matthew A. Glaser

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Michi Nakata

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

David M. Walba

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chenhui Zhu

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kathryn P. Wall

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Eva Korblova

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Joseph E. Maclennan

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge