Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loren Hauser is active.

Publication


Featured researches published by Loren Hauser.


BMC Bioinformatics | 2010

Prodigal: prokaryotic gene recognition and translation initiation site identification

Doug Hyatt; Gwo-Liang Chen; Philip F. LoCascio; Miriam Land; Frank W. Larimer; Loren Hauser

BackgroundThe quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals.ResultsWith our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives.ConclusionWe built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.gov/prodigal/. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines.


Nature | 2003

Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation

Gabrielle Rocap; Frank W. Larimer; Jane E. Lamerdin; Stephanie Malfatti; Patrick Chain; Nathan A. Ahlgren; Andrae Arellano; Maureen L. Coleman; Loren Hauser; Wolfgang R. Hess; Zackary I. Johnson; Miriam Land; Debbie Lindell; Anton F. Post; Warren Regala; Manesh B Shah; Stephanie L. Shaw; Claudia Steglich; Matthew B. Sullivan; Claire S. Ting; Andrew C. Tolonen; Eric A. Webb; Erik R. Zinser; Sallie W. Chisholm

The marine unicellular cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. It numerically dominates the phytoplankton in the tropical and subtropical oceans, and is responsible for a significant fraction of global photosynthesis. Here we compare the genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Prochlorococcus lineage and that have different minimum, maximum and optimal light intensities for growth. The high-light-adapted ecotype has the smallest genome (1,657,990 base pairs, 1,716 genes) of any known oxygenic phototroph, whereas the genome of its low-light-adapted counterpart is significantly larger, at 2,410,873 base pairs (2,275 genes). The comparative architectures of these two strains reveal dynamic genomes that are constantly changing in response to myriad selection pressures. Although the two strains have 1,350 genes in common, a significant number are not shared, and these have been differentially retained from the common ancestor, or acquired through duplication or lateral transfer. Some of these genes have obvious roles in determining the relative fitness of the ecotypes in response to key environmental variables, and hence in regulating their distribution and abundance in the oceans.


Nature | 2003

The genome of a motile marine Synechococcus

Brian Palenik; Bianca Brahamsha; Frank W. Larimer; Miriam Land; Loren Hauser; Patrick Chain; Jane E. Lamerdin; W. Regala; Eric E. Allen; J. McCarren; I. Paulsen; A. Dufresne; F. Partensky; Eric A. Webb; John B. Waterbury

Marine unicellular cyanobacteria are responsible for an estimated 20–40% of chlorophyll biomass and carbon fixation in the oceans. Here we have sequenced and analysed the 2.4-megabase genome of Synechococcus sp. strain WH8102, revealing some of the ways that these organisms have adapted to their largely oligotrophic environment. WH8102 uses organic nitrogen and phosphorus sources and more sodium-dependent transporters than a model freshwater cyanobacterium. Furthermore, it seems to have adopted strategies for conserving limited iron stores by using nickel and cobalt in some enzymes, has reduced its regulatory machinery (consistent with the fact that the open ocean constitutes a far more constant and buffered environment than fresh water), and has evolved a unique type of swimming motility. The genome of WH8102 seems to have been greatly influenced by horizontal gene transfer, partially through phages. The genetic material contributed by horizontal gene transfer includes genes involved in the modification of the cell surface and in swimming motility. On the basis of its genome, WH8102 is more of a generalist than two related marine cyanobacteria.


Nature Biotechnology | 2004

Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris.

Frank W. Larimer; Patrick Chain; Loren Hauser; Jane E. Lamerdin; Stephanie Malfatti; Long Do; Miriam Land; Dale A. Pelletier; Thomas G. Beatty; Andrew S. Lang; F. Robert Tabita; Janet L. Gibson; Cedric Bobst; Janelle L. Torres y Torres; Caroline Peres; Faith H. Harrison; Jane Gibson; Caroline S. Harwood

Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant–derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.


Journal of Bacteriology | 2003

Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea

Patrick Chain; Jane E. Lamerdin; Frank W. Larimer; Warren Regala; Victoria Lao; Miriam Land; Loren Hauser; Alan B. Hooper; Martin G. Klotz; Jeanette M. Norton; Luis A. Sayavedra-Soto; Dave M. Arciero; Norman G. Hommes; Mark Whittaker; Daniel J. Arp

Nitrosomonas europaea (ATCC 19718) is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The GC skew analysis indicates that the genome is divided into two unequal replichores. Genes are distributed evenly around the genome, with approximately 47% transcribed from one strand and approximately 53% transcribed from the complementary strand. A total of 2,460 protein-encoding genes emerged from the modeling effort, averaging 1,011 bp in length, with intergenic regions averaging 117 bp. Genes necessary for the catabolism of ammonia, energy and reductant generation, biosynthesis, and CO(2) and NH(3) assimilation were identified. In contrast, genes for catabolism of organic compounds are limited. Genes encoding transporters for inorganic ions were plentiful, whereas genes encoding transporters for organic molecules were scant. Complex repetitive elements constitute ca. 5% of the genome. Among these are 85 predicted insertion sequence elements in eight different families. The strategy of N. europaea to accumulate Fe from the environment involves several classes of Fe receptors with more than 20 genes devoted to these receptors. However, genes for the synthesis of only one siderophore, citrate, were identified in the genome. This genome has provided new insights into the growth and metabolism of ammonia-oxidizing bacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Burkholderia Xenovorans LB400 Harbors a Multi-Replicon, 9.73-Mbp Genome Shaped for Versatility

Patrick Chain; Vincent J. Denef; Konstantinos T. Konstantinidis; Lisa M. Vergez; Loreine Agulló; Valeria Latorre Reyes; Loren Hauser; Macarena Córdova; Luis Gómez; Myriam González; Miriam Land; Victoria Lao; Frank W. Larimer; John J. LiPuma; Eshwar Mahenthiralingam; Stephanie Malfatti; Christopher J. Marx; J. Jacob Parnell; Alban Ramette; Paul G. Richardson; Michael Seeger; Daryl J. Smith; Theodore Spilker; Woo Jun Sul; Tamara V. Tsoi; Luke E. Ulrich; Igor B. Zhulin; James M. Tiedje

Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven “central aromatic” and twenty “peripheral aromatic” pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.


Applied and Environmental Microbiology | 2007

Targeted Access to the Genomes of Low-Abundance Organisms in Complex Microbial Communities

Mircea Podar; Carl B. Abulencia; Marion Walcher; Don Hutchison; Karsten Zengler; Joseph Garcia; Trevin Holland; David Cotton; Loren Hauser; Martin S. Keller

ABSTRACT Current metagenomic approaches to the study of complex microbial consortia provide a glimpse into the community metabolism and occasionally allow genomic assemblies for the most abundant organisms. However, little information is gained for the members of the community present at low frequencies, especially those representing yet-uncultured taxa, which include the bulk of the diversity present in most environments. Here we used phylogenetically directed cell separation by fluorescence in situ hybridization and flow cytometry, followed by amplification and sequencing of a fraction of the genomic DNA of several bacterial cells that belong to the TM7 phylum. Partial genomic assembly allowed, for the first time, a look into the evolution and potential metabolism of a soil representative from this group of organisms for which there are no species in stable laboratory cultures. Genomic reconstruction from targeted cells of uncultured organisms isolated directly from the environment represents a powerful approach to access any specific members of a community and an alternative way to assess the communitys metabolic potential.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Enigmatic, ultrasmall, uncultivated Archaea

Brett J. Baker; Luis R. Comolli; Gregory J. Dick; Loren Hauser; Doug Hyatt; Brian D. Dill; Miriam Land; Nathan C. VerBerkmoes; Robert L. Hettich; Jillian F. Banfield

Metagenomics has provided access to genomes of as yet uncultivated microorganisms in natural environments, yet there are gaps in our knowledge—particularly for Archaea—that occur at relatively low abundance and in extreme environments. Ultrasmall cells (<500 nm in diameter) from lineages without cultivated representatives that branch near the crenarchaeal/euryarchaeal divide have been detected in a variety of acidic ecosystems. We reconstructed composite, near-complete ~1-Mb genomes for three lineages, referred to as ARMAN (archaeal Richmond Mine acidophilic nanoorganisms), from environmental samples and a biofilm filtrate. Genes of two lineages are among the smallest yet described, enabling a 10% higher coding density than found genomes of the same size, and there are noncontiguous genes. No biological function could be inferred for up to 45% of genes and no more than 63% of the predicted proteins could be assigned to a revised set of archaeal clusters of orthologous groups. Some core metabolic genes are more common in Crenarchaeota than Euryarchaeota, up to 21% of genes have the highest sequence identity to bacterial genes, and 12 belong to clusters of orthologous groups that were previously exclusive to bacteria. A small subset of 3D cryo-electron tomographic reconstructions clearly show penetration of the ARMAN cell wall and cytoplasmic membranes by protuberances extended from cells of the archaeal order Thermoplasmatales. Interspecies interactions, the presence of a unique internal tubular organelle [Comolli, et al. (2009) ISME J 3:159–167], and many genes previously only affiliated with Crenarchaea or Bacteria indicate extensive unique physiology in organisms that branched close to the time that Cren- and Euryarchaeotal lineages diverged.


PLOS Genetics | 2011

The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri

Steven A. Frese; Andrew K. Benson; Gerald W. Tannock; Diane M. Loach; Jaehyoung Kim; Min Zhang; Phaik Lyn Oh; Nicholas C. K. Heng; Prabhu B. Patil; Nathalie Juge; Donald A. MacKenzie; Bruce M. Pearson; Alla Lapidus; Eileen Dalin; Hope Tice; Eugene Goltsman; Miriam Land; Loren Hauser; Natalia Ivanova; Nikos C. Kyrpides; Jens Walter

Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.


Bioinformatics | 2012

Gene and translation initiation site prediction in metagenomic sequences

Doug Hyatt; Philip F. LoCascio; Loren Hauser; Edward C. Uberbacher

MOTIVATION Gene prediction in metagenomic sequences remains a difficult problem. Current sequencing technologies do not achieve sufficient coverage to assemble the individual genomes in a typical sample; consequently, sequencing runs produce a large number of short sequences whose exact origin is unknown. Since these sequences are usually smaller than the average length of a gene, algorithms must make predictions based on very little data. RESULTS We present MetaProdigal, a metagenomic version of the gene prediction program Prodigal, that can identify genes in short, anonymous coding sequences with a high degree of accuracy. The novel value of the method consists of enhanced translation initiation site identification, ability to identify sequences that use alternate genetic codes and confidence values for each gene call. We compare the results of MetaProdigal with other methods and conclude with a discussion of future improvements. AVAILABILITY The Prodigal software is freely available under the General Public License from http://code.google.com/p/prodigal/.

Collaboration


Dive into the Loren Hauser's collaboration.

Top Co-Authors

Avatar

Miriam Land

University of California

View shared research outputs
Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Susan Lucas

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Sam Pitluck

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Natalia Ivanova

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cliff Han

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alla Lapidus

University of California

View shared research outputs
Top Co-Authors

Avatar

Matt Nolan

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Amy Chen

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Amrita Pati

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge