Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loren Price is active.

Publication


Featured researches published by Loren Price.


WOS | 2013

Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization

Klaus Bønnelykke; Melanie C. Matheson; Tune H. Pers; Raquel Granell; David P. Strachan; Alexessander Couto Alves; Allan Linneberg; John A. Curtin; Nicole M. Warrington; Marie Standl; Marjan Kerkhof; Ingileif Jonsdottir; Blazenka Kljaic Bukvic; Marika Kaakinen; Patrick Sleimann; Gudmar Thorleifsson; Unnur Thorsteinsdottir; Katharina Schramm; Svetlana Baltic; Eskil Kreiner-Møller; Angela Simpson; Beate St Pourcain; Lachlan Coin; Jennie Hui; Eh Walters; Carla M.T. Tiesler; David L. Duffy; G. Jones; Susan M. Ring; Wendy L. McArdle

Allergen-specific immunoglobulin E (present in allergic sensitization) has a central role in the pathogenesis of allergic disease. We performed the first large-scale genome-wide association study (GWAS) of allergic sensitization in 5,789 affected individuals and 10,056 controls and followed up the top SNP at each of 26 loci in 6,114 affected individuals and 9,920 controls. We increased the number of susceptibility loci with genome-wide significant association with allergic sensitization from three to ten, including SNPs in or near TLR6, C11orf30, STAT6, SLC25A46, HLA-DQB1, IL1RL1, LPP, MYC, IL2 and HLA-B. All the top SNPs were associated with allergic symptoms in an independent study. Risk-associated variants at these ten loci were estimated to account for at least 25% of allergic sensitization and allergic rhinitis. Understanding the molecular mechanisms underlying these associations may provide new insights into the etiology of allergic disease.


The Journal of Allergy and Clinical Immunology | 2014

Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype.

Manuel A. Ferreira; Melanie C. Matheson; Clara S. Tang; Raquel Granell; Wei Ang; Jennie Hui; Amy K. Kiefer; David L. Duffy; Svetlana Baltic; Patrick Danoy; Minh Bui; Loren Price; Peter D. Sly; Nicholas Eriksson; Pamela A. F. Madden; Michael J. Abramson; Patrick G. Holt; Andrew C. Heath; Michael Hunter; Bill Musk; Colin F. Robertson; Peter Le Souef; Grant W. Montgomery; A. John Henderson; Joyce Y. Tung; Shyamali C. Dharmage; Matthew A. Brown; Alan James; Philip J. Thompson; Craig E. Pennell

BACKGROUND To date, no genome-wide association study (GWAS) has considered the combined phenotype of asthma with hay fever. Previous analyses of family data from the Tasmanian Longitudinal Health Study provide evidence that this phenotype has a stronger genetic cause than asthma without hay fever. OBJECTIVE We sought to perform a GWAS of asthma with hay fever to identify variants associated with having both diseases. METHODS We performed a meta-analysis of GWASs comparing persons with both physician-diagnosed asthma and hay fever (n = 6,685) with persons with neither disease (n = 14,091). RESULTS At genome-wide significance, we identified 11 independent variants associated with the risk of having asthma with hay fever, including 2 associations reaching this level of significance with allergic disease for the first time: ZBTB10 (rs7009110; odds ratio [OR], 1.14; P = 4 × 10(-9)) and CLEC16A (rs62026376; OR, 1.17; P = 1 × 10(-8)). The rs62026376:C allele associated with increased asthma with hay fever risk has been found to be associated also with decreased expression of the nearby DEXI gene in monocytes. The 11 variants were associated with the risk of asthma and hay fever separately, but the estimated associations with the individual phenotypes were weaker than with the combined asthma with hay fever phenotype. A variant near LRRC32 was a stronger risk factor for hay fever than for asthma, whereas the reverse was observed for variants in/near GSDMA and TSLP. Single nucleotide polymorphisms with suggestive evidence for association with asthma with hay fever risk included rs41295115 near IL2RA (OR, 1.28; P = 5 × 10(-7)) and rs76043829 in TNS1 (OR, 1.23; P = 2 × 10(-6)). CONCLUSION By focusing on the combined phenotype of asthma with hay fever, variants associated with the risk of allergic disease can be identified with greater efficiency.


Human Gene Therapy | 2013

A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice.

Haiyan Zhou; Narinder Janghra; C. Mitrpant; Rachel L. Dickinson; Karen Anthony; Loren Price; Ian C. Eperon; Stephen D. Wilton; Jennifer E. Morgan; Francesco Muntoni

In the search for the most efficacious antisense oligonucleotides (AOs) aimed at inducing SMN2 exon 7 inclusion, we systematically assessed three AOs, PMO25 (-10, -34), PMO18 (-10, -27), and PMO20 (-10, -29), complementary to the SMN2 intron 7 splicing silencer (ISS-N1). PMO25 was the most efficacious in augmenting exon 7 inclusion in vitro in spinal muscular atrophy (SMA) patient fibroblasts and in vitro splicing assays. PMO25 and PMO18 were compared further in a mouse model of severe SMA. After a single intracerebroventricular (ICV) injection in neonatal mice, PMO25 increased the life span of severe SMA mice up to 30-fold, with average survival greater by 3-fold compared with PMO18 at a dose of 20 μg/g and 2-fold at 40 μg/g. Exon 7 inclusion was increased in the CNS but not in peripheral tissues. Systemic delivery of PMO25 at birth achieved a similar outcome and produced increased exon 7 inclusion both in the CNS and peripherally. Systemic administration of a 10-μg/g concentration of PMO25 conjugated to an octaguanidine dendrimer (VMO25) increased the life span only 2-fold in neonatal type I SMA mice, although it prevented tail necrosis in mild SMA mice. Higher doses and ICV injection of VMO25 were associated with toxicity. We conclude that (1) the 25-mer AO is more efficient than the 18-mer and 20-mer in modifying SMN2 splicing in vitro; (2) it is more efficient in prolonging survival in SMA mice; and (3) naked Morpholino oligomers are more efficient and safer than the Vivo-Morpholino and have potential for future SMA clinical applications.


PLOS ONE | 2013

Improved Antisense Oligonucleotide Design to Suppress Aberrant SMN2 Gene Transcript Processing: Towards a Treatment for Spinal Muscular Atrophy

C. Mitrpant; Paul Porensky; Haiyan Zhou; Loren Price; Francesco Muntoni; S. Fletcher; S.D. Wilton; Arthur H.M. Burghes

Spinal muscular atrophy (SMA) is caused by loss of the Survival Motor Neuron 1 (SMN1) gene, resulting in reduced SMN protein. Humans possess the additional SMN2 gene (or genes) that does produce low level of full length SMN, but cannot adequately compensate for loss of SMN1 due to aberrant splicing. The majority of SMN2 gene transcripts lack exon 7 and the resultant SMNΔ7 mRNA is translated into an unstable and non-functional protein. Splice intervention therapies to promote exon 7 retention and increase amounts of full-length SMN2 transcript offer great potential as a treatment for SMA patients. Several splice silencing motifs in SMN2 have been identified as potential targets for antisense oligonucleotide mediated splice modification. A strong splice silencer is located downstream of exon 7 in SMN2 intron 7. Antisense oligonucleotides targeting this motif promoted SMN2 exon 7 retention in the mature SMN2 transcripts, with increased SMN expression detected in SMA fibroblasts. We report here systematic optimisation of phosphorodiamidate morpholino oligonucleotides (PMO) that promote exon 7 retention to levels that rescued the phenotype in a severe mouse model of SMA after intracerebroventricular delivery. Furthermore, the PMO gives the longest survival reported to date after a single dosing by ICV.


Journal of Neuroimmunology | 2013

Complement-mediated muscle cell lysis: A possible mechanism of myonecrosis in anti-SRP associated necrotizing myopathy (ASANM)

Arada Rojana-udomsart; C. Mitrpant; Christine Bundell; Loren Price; Yue-Bei Luo; V. Fabian; S.D. Wilton; Peter Hollingsworth; F.L. Mastaglia

The mechanism of necrotizing myopathy associated with antibodies to signal recognition particle (SRP) remains unclear. We investigated the effect of anti-SRP+serum and complement on cell viability in myoblast cultures. Cell viability was only slightly reduced by incubation with anti-SRP+serum compared with control serum. However, the addition of fresh complement resulted in a marked reduction in cell survival. Surface immunostaining for SRP, C3c and C5b-9 was demonstrated in cultures pre-incubated with anti-SRP+serum and complement, and in muscle biopsies from patients with myopathy. These findings provide further support for a complement-dependent antibody-mediated mechanism in anti-SRP associated myopathy.


Expert Opinion on Biological Therapy | 2017

Translational development of splice-modifying antisense oligomers

S. Fletcher; M. Bellgard; Loren Price; Ap Akkari; S.D. Wilton

ABSTRACT Introduction: Antisense nucleic acid analogues can interact with pre-mRNA motifs and influence exon or splice site selection and thereby alter gene expression. Design of antisense molecules to target specific motifs can result in either exon exclusion or exon inclusion during splicing. Novel drugs exploiting the antisense concept are targeting rare, life-limiting diseases; however, the potential exists to treat a wide range of conditions by antisense-mediated splice intervention. Areas covered: In this review, the authors discuss the clinical translation of novel molecular therapeutics to address the fatal neuromuscular disorders Duchenne muscular dystrophy and spinal muscular atrophy. The review also highlights difficulties posed by issues pertaining to restricted participant numbers, variable phenotype and disease progression, and the identification and validation of study endpoints. Expert opinion: Translation of novel therapeutics for Duchenne muscular dystrophy and spinal muscular atrophy has been greatly advanced by multidisciplinary research, academic-industry partnerships and in particular, the engagement and support of the patient community. Sponsors, supporters and regulators are cooperating to deliver new drugs and identify and define meaningful outcome measures. Non-conventional and adaptive trial design could be particularly suited to clinical evaluation of novel therapeutics and strategies to treat serious, rare diseases that may be problematic to study using more conventional clinical trial structures.


Neuroscience | 2012

Co-regulation of survival of motor neuron and Bcl-xL expression: Implications for neuroprotection in spinal muscular atrophy

Ryan S. Anderton; Loren Price; Bradley J. Turner; Bruno P. Meloni; C. Mitrpant; F.L. Mastaglia; Clarissa Goh; S.D. Wilton; Sherif Boulos

Spinal muscular atrophy (SMA), a fatal genetic motor disorder of infants, is caused by diminished full-length survival of motor neuron (SMN) protein levels. Normally involved in small nuclear ribonucleoprotein (snRNP) assembly and pre-mRNA splicing, recent studies suggest that SMN plays a critical role in regulating apoptosis. Interestingly, the anti-apoptotic Bcl-x isoform, Bcl-xL, is reduced in SMA. In a related finding, Sam68, an RNA-binding protein, was found to modulate splicing of SMN and Bcl-xL transcripts, promoting SMNΔ7 and pro-apoptotic Bcl-xS transcripts. Here we demonstrate that Bcl-xL expression increases SMN protein by ∼2-fold in SH-SY5Y cells. Conversely, SMN expression increases Bcl-xL protein levels by ∼6-fold in SH-SY5Y cells, and ∼2.5-fold in the brains of transgenic mice over-expressing SMN (PrP-SMN). Moreover, Sam68 protein levels were markedly reduced following SMN and Bcl-xL expression in SH-SY5Y cells, suggesting a feedback mechanism co-regulating levels of both proteins. We also found that exogenous SMN expression increased full-length SMN transcripts, possibly by promoting exon 7 inclusion. Finally, co-expression of SMN and Bcl-xL produced an additive anti-apoptotic effect following PI3-kinase inhibition in SH-SY5Y cells. Our findings implicate Bcl-xL as another potential target in SMA therapeutics, and indicate that therapeutic increases in SMN may arise from modest increases in total SMN.


Journal of Cystic Fibrosis | 2007

Restoration Of The CFTR Function By Splicing Modulation

Batsheva Kerem; Michal Tur Sinai; Loren Price; Stephen D. Wilton; S. Fletcher

The present provides oligonucleotides capable of binding to and modulating the splicing of the pre-mRNA of the CFTR gene, compositions comprising said oligonucleotides, kits comprising said compositions, and uses thereof. In particular, the present invention provides compositions of oligonucleotides useful in methods for suppressing exon 10 skipping optionally in combination with additional CFTR therapeutics.


Neuromuscular Disorders | 2013

P.6.5 Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing

C. Mitrpant; Paul Porensky; Haiyan Zhou; Loren Price; Francesco Muntoni; S. Fletcher; S.D. Wilton; Arthur H.M. Burghes

Spinal muscular atrophy (SMA) is caused by loss of the Survival Motor Neuron 1 (SMN1) gene, resulting in reduced SMN protein. Humans possess the additional SMN2 gene (or genes) that does produce low level of full length SMN, but cannot adequately compensate for loss of SMN1 due to aberrant splicing. The majority of SMN2 gene transcripts lack exon 7 and the resultant SMNΔ7 mRNA is translated into an unstable and non-functional protein. Splice intervention therapies to promote exon 7 retention and increase amounts of full-length SMN2 transcript offer great potential as a treatment for SMA patients. Several splice silencing motifs in SMN2 have been identified as potential targets for antisense oligonucleotide mediated splice modification. A strong splice silencer is located downstream of exon 7 in SMN2 intron 7. Antisense oligonucleotides targeting this motif promoted SMN2 exon 7 retention in the mature SMN2 transcripts, with increased SMN expression detected in SMA fibroblasts. We report here systematic optimisation of phosphorodiamidate morpholino oligonucleotides (PMO) that promote exon 7 retention to levels that rescued the phenotype in a severe mouse model of SMA after intracerebroventricular delivery. Furthermore, the PMO gives the longest survival reported to date after a single dosing by ICV.


Neuromuscular Disorders | 2012

T.P.33 A cutting-edge approach to Spinal Muscular Atrophy treatment using antisense oligonucleotides

Loren Price; C. Mitrpant; S. Fletcher; S.D. Wilton

Abstract Spinal Muscular Atrophy (SMA), a severe neuromuscular disorder characterised by the loss of motor neurons, is typically caused by deletion of the Survival Motor Neuron (SMN) 1 gene. The loss of the SMN1 gene product is incompatible with life, however in humans the presence of one or more copies of the near-identical SMN2 modifies disease severity. A single C>T base change in exon 7 of SMN2 results in abnormal splicing with the majority of transcripts missing exon 7 that encodes a crucial oligomerisation domain, and therefore results in a non-functional protein. The C>T variation simultaneously abrogates an exonic splicing enhancer, and creates a silencing element that leads to the exclusion of this exon from the mature gene transcript. Hence, redirecting splicing of SMN2 pre-mRNA has become a potential therapeutic target with the aim of re-enforcing exon 7 recognition and inclusion to increase levels of the full-length transcript and functional protein. Antisense oligomers (AOs) can interfere with splice site recognition by the spliceosome, and depending upon design can promote exon skipping or exon inclusion in the mature transcript. In treating SMA, efforts have focused on either enhancing exon 7 recognition, or masking splice silencing motifs located in introns 6 or 7. We present a third strategy where targeting the acceptor site of exon 8 with AOs induced exon and intron 7 inclusion in the transcript. The retention of intron 7 occurs after the normal stop codon and results in a longer than normal 3′ untranslated region. Western blot analysis demonstrated increased SMN expression in various SMA patient fibroblasts transfected with these AOs. “GEMs” are intranuclear aggregates of SMN and are barely quantifiable in fibroblasts from SMA patients. Immunofluorescent GEM staining showed substantial increases in abundance of GEMs in the AO treated SMA fibroblasts, indicating this strategy has considerable therapeutic potential.

Collaboration


Dive into the Loren Price's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Mitrpant

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Duffy

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jennie Hui

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Svetlana Baltic

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Francesco Muntoni

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Haiyan Zhou

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge