Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorena M. Amaral is active.

Publication


Featured researches published by Lorena M. Amaral.


Vascular Health and Risk Management | 2015

Preeclampsia: long-term consequences for vascular health

Lorena M. Amaral; Mark W. Cunningham; Denise C. Cornelius; Babbette LaMarca

Preeclampsia (PE) is a pregnancy-specific syndrome and one of the leading causes of preterm birth, neonatal and maternal morbidity and mortality. This disease is characterized by new onset hypertension usually in the third trimester of pregnancy and is sometimes associated with proteinuria, although proteinuria is not a requirement for the diagnosis of PE. In developing countries, women have a higher risk of death due to PE than more affluent countries and one of the most frequent causes of death is high blood pressure and stroke. Although PE only affects approximately 2%–8% of pregnancies worldwide it is associated with severe complications such as eclampsia, hemorrhagic stroke, hemolysis, elevated liver enzymes and low platelets (HELLP syndrome), renal failure and pulmonary edema. Importantly, there is no “cure” for the disease except for early delivery of the baby and placenta, leaving PE a health care risk for babies born from PE moms. In addition, PE is linked to the development of cardiovascular disease and stroke in women after reproductive age, leaving PE a risk factor for long-term health in women. This review will highlight factors implicated in the pathophysiology of PE that may contribute to long-term effects in women with preeclamptic pregnancies.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

An increased population of regulatory T cells improves the pathophysiology of placental ischemia in a rat model of preeclampsia

Denise C. Cornelius; Lorena M. Amaral; Ashlyn Harmon; Kedra Wallace; Alexia Thomas; Nathan Campbell; Jeremy Scott; Florian Herse; Nadine Haase; Janae Moseley; Gerd Wallukat; Ralf Dechend; Babbette LaMarca

The reduced uterine perfusion pressure (RUPP) rat model of preeclampsia exhibits much of the pathology characterizing this disease, such as hypertension, inflammation, suppressed regulatory T cells (TRegs), reactive oxygen species (ROS), and autoantibodies to the ANG II type I receptor (AT1-AA) during pregnancy. The objective of this study was to determine whether supplementation of normal pregnant (NP) TRegs into RUPP rats would attenuate the pathophysiology associated with preeclampsia during pregnancy. CD4(+)/CD25(+) T cells were isolated from spleens of NP and RUPP rats, cultured, and injected into gestation day (GD) 12 normal pregnant rats that underwent the RUPP procedure on GD 14. On GD 1, mean arterial pressure (MAP) was recorded, and blood and tissues were collected for analysis. One-way ANOVA was used for statistical analysis. MAP increased from 99 ± 2 mmHg in NP (n = 12) to 127 ± 2 mmHg in RUPP (n = 21) but decreased to 118 ± 2 mmHg in RUPP+NP TRegs (n = 17). Circulating IL-6 and IL-10 were not significantly changed, while circulating TNF-α and IL-17 were significantly decreased after supplementation of TRegs. Placental and renal ROS were 339 ± 58.7 and 603 ± 88.1 RLU·min(-1)·mg(-1) in RUPP and significantly decreased to 178 ± 27.8 and 171 ± 55.6 RLU·min(-1)·mg(-1), respectively, in RUPP+NP TRegs; AT1-AA was 17.81 ± 1.1 beats per minute (bpm) in RUPP but was attenuated to 0.50 ± 0.3 bpm with NP TRegs. This study demonstrates that NP TRegs can significantly improve inflammatory mediators, such as IL-17, TNF-α, and AT1-AA, which have been shown to increase blood pressure during pregnancy.


Hypertension in Pregnancy | 2015

IL-10 supplementation increases Tregs and decreases hypertension in the RUPP rat model of preeclampsia

Ashlyn Harmon; Denise C. Cornelius; Lorena M. Amaral; Adrienne Paige; Florian Herse; Tarek Ibrahim; Gerd Wallukat; Jessica L. Faulkner; Janae Moseley; Ralf Dechend; Babbette LaMarca

Objective: The reduced uterine perfusion pressure (RUPP) rat model of preeclampsia was used to determine the effects of added interleukin-10 (IL-10) on Tregs and hypertension in response to placental ischemia and how the decrease in these anti-inflammatory factors mediates the pathophysiology of preeclampsia. Methods: IL-10 (2.5 ng/kg/d) was infused via osmotic mini-pump implanted intraperitoneally on day 14 of gestation and, at the same time, the RUPP procedure was performed. Results: IL-10 reduced mean arterial pressure (p < 0.001), decreased CD4+ T cells (p = 0.044), while increasing Tregs (p = 0.043) which led to lower IL-6 and TNF-α (p = 0.008 and p = 0.003), reduced AT1-AA production (p < 0.001), and decreased oxidative stress (p = 0.029) in RUPP rats. Conclusion: These data indicate that IL-10 supplementation increases Tregs and helps to balance the altered immune system seen during preeclampsia.


Hypertension | 2015

17-Hydroxyprogesterone Caproate Significantly Improves Clinical Characteristics of Preeclampsia in the Reduced Uterine Perfusion Pressure Rat Model

Lorena M. Amaral; Denise C. Cornelius; Ashlyn Harmon; Janae Moseley; James N. Martin; Babbette LaMarca

Preeclampsia is characterized by increased uterine artery resistance index, chronic immune activation, and decreased circulating nitric oxide levels. 17-&agr;-Hydroxyprogesterone caproate (17-OHPC) is a synthetic metabolite of progesterone used for the prevention of recurrent preterm birth. We hypothesized that 17-OHPC could reduce mean arterial pressure by decreasing inflammation, whereas improving vasodilation by increasing nitric oxide bioavailability and uterine artery resistance index during late gestation in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. 17-OHPC (3.32 mg/kg) was intraperitoneally administered on gestation day 18 into RUPP rats, carotid catheters inserted, and mean arterial pressure, blood, and tissues were collected on day 19. Mean arterial pressure in normal pregnant (NP; n=13) was 92±2.0 and increased to123±2.0 in RUPP (n=18; P<0.0001), which was improved to 116±1.5 mm Hg in RUPP+17-OHPC (n=10; P<0.05). Circulating CD4+ T cells were 1.19%±1.0% of gated cells in NP (n=7), which increased to 8.52%±2.4% in RUPP rats (n=10; P<0.05) but was reduced to 2.72%±0.87% (n=14; P<0.05) in RUPP+17-OHPC. Circulating nitrate/nitrite was 26.34±3.5 µmol/L in NP (n=12) but was reduced to14.58±3.1 in RUPP rats (n=8; P=0.03) and increased to 22.69±1.62 in RUPP+17-OHPC (n=7; P=0.05). Endothelial nitric oxide synthase expression was 0.65±0.11 AU in NP (n=4), which decreased to 0.33±0.01 in RUPP rats (n=4; P=0.05) but increased to 0.57±0.01 in RUPP+17-OHPC (n=5; P=0.03). Uterine artery resistance index was 0.54±0.02 in NP (n=3), 0.78±0.03 in RUPP (n=4), and 0.63±0.038 in RUPP+17-OHPC (n=8; both P<0.05). Our findings demonstrate that even though modest, lowering blood pressure with 17-OHPC could be a viable treatment option for suppressing inflammation, uterine artery vasoconstriction while improving litter size.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

Identifying immune mechanisms mediating the hypertension during preeclampsia.

Babbette LaMarca; Denise C. Cornelius; Ashlyn Harmon; Lorena M. Amaral; Mark W. Cunningham; Jessica L. Faulkner; Kedra Wallace

Preeclampsia (PE) is a pregnancy-associated disorder that affects 5-8% of pregnancies and is a major cause of maternal, fetal, and neonatal morbidity and mortality. Hallmark characteristics of PE are new onset hypertension after 20 wk gestation with or without proteinuria, chronic immune activation, fetal growth restriction, and maternal endothelial dysfunction. However, the pathophysiological mechanisms that lead to the development of PE are poorly understood. Recent data from studies of both clinical and animal models demonstrate an imbalance in the subpopulations of CD4+ T cells and a role for these cells as mediators of inflammation and hypertension during pregnancy. Specifically, it has been proposed that the imbalance between two CD4+ T cell subtypes, regulatory T cells (Tregs) and T-helper 17 cells (Th17s), is involved in the pathophysiology of PE. Studies from our laboratory highlighting how this imbalance contributes to vasoactive factors, endothelial dysfunction, and hypertension during pregnancy will be discussed in this review. Therefore, the purpose of this review is to highlight hypertensive mechanisms stimulated by inflammatory factors in response to placental ischemia, thereby elucidating a role.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

Vitamin D supplementation improves pathophysiology in a rat model of preeclampsia

Jessica L. Faulkner; Denise C. Cornelius; Lorena M. Amaral; Ashlyn Harmon; Mark W. Cunningham; Marie Darby; Tarek Ibrahim; D'Andrea Thomas; Florian Herse; Gerd Wallukat; Ralf Dechend; Babbette LaMarca

Deficiency of vitamin D (VD) is associated with preeclampsia (PE), a hypertensive disorder of pregnancy characterized by proinflammatory immune activation. We sought to determine whether VD supplementation would reduce the pathophysiology and hypertension associated with the reduced uterine perfusion pressure (RUPP) rat model of PE. Normal pregnant (NP) and RUPP rats were supplemented with VD2 or VD3 (270 IU and 15 IU/day, respectively) on gestation days 14-18 and mean arterial pressures (MAPs) measured on day 19. MAP increased in RUPP to 123 ± 2 mmHg compared with 102 ± 3 mmHg in NP and decreased to 113 ± 3 mmHg with VD2 and 115 ± 3 mmHg with VD3 in RUPP rats. Circulating CD4+ T cells increased in RUPP to 7.90 ± 1.36% lymphocytes compared with 2.04 ± 0.67% in NP but was lowered to 0.90 ± 0.19% with VD2 and 4.26 ± 1.55% with VD3 in RUPP rats. AT1-AA, measured by chronotropic assay, decreased from 19.5 ± 0.4 bpm in RUPPs to 8.3 ± 0.5 bpm with VD2 and to 15.4 ± 0.7 bpm with VD3. Renal cortex endothelin-1 (ET-1) expression was increased in RUPP rats (11.6 ± 2.1-fold change from NP) and decreased with both VD2 (3.3 ± 1.1-fold) and VD3 (3.1 ± 0.6-fold) supplementation in RUPP rats. Plasma-soluble FMS-like tyrosine kinase-1 (sFlt-1) was also reduced to 74.2 ± 6.6 pg/ml in VD2-treated and 91.0 ± 16.1 pg/ml in VD3-treated RUPP rats compared with 132.7 ± 19.9 pg/ml in RUPP rats. VD treatment reduced CD4+ T cells, AT1-AA, ET-1, sFlt-1, and blood pressure in the RUPP rat model of PE and could be an avenue to improve treatment of hypertension in response to placental ischemia.


Current Hypertension Reports | 2016

Placental Ischemia and Resultant Phenotype in Animal Models of Preeclampsia.

Babbette LaMarca; Lorena M. Amaral; Ashlyn Harmon; Denise C. Cornelius; Jessica L. Faulkner; Mark W. Cunningham

Preeclampsia is new onset (or worsening of preexisting) hypertension that occurs during pregnancy. It is accompanied by chronic inflammation, intrauterine growth restriction, elevated anti-angiogenic factors, and can occur with or without proteinuria. Although the exact etiology is unknown, it is thought that preeclampsia begins early in gestation with reduced uterine spiral artery remodeling leading to decreased vasculogenesis of the placenta as the pregnancy progresses. Soluble factors, stimulated by the ischemic placenta, shower the maternal vascular endothelium and are thought to cause endothelial dysfunction and to contribute to the development of hypertension during pregnancy. Due to the difficulty in studying such soluble factors in pregnant women, various animal models have been designed. Studies from these models have contributed to a better understanding of how factors released in response to placental ischemia may lead to increased blood pressure and reduced fetal weight during pregnancy. This review will highlight various animal models and the major findings indicating the importance of placental ischemia to lead to the pathophysiology observed in preeclamptic patients.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

Reduced uterine perfusion pressure T-helper 17 cells cause pathophysiology associated with preeclampsia during pregnancy

Denise C. Cornelius; Lorena M. Amaral; Kedra Wallace; Nathan Campbell; Alexia Thomas; Jeremy Scott; Florian Herse; Gerd Wallukat; Ralf Dechend; Babbette LaMarca

Preeclampsia is associated with chronic inflammation and an imbalance among T-helper cell subtypes with an increase in T-helper 17 (TH17) cells. The objective of this study was to determine a role for TH17s, from the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia, in the etiology of hypertension and chronic inflammation during pregnancy. CD4+/CD25- T cells were isolated from rat spleens, cultured in TH17 media, and were verified as TH17s via flow cytometry. On day 12 of gestation, 1×106 TH17 cells from RUPP rats were adoptively transferred into NP rats, carotid catheters were inserted on day 18, and on day 19, mean arterial pressure (MAP) was recorded, serum and plasma were collected, and oxidative stress and production of agonistic autoantibodies to the ANG II type I receptor (AT1-AA) were analyzed. MAP increased from 100.3 ± 1.7 mmHg in normal pregnant (NP; n = 17) to 124.8 ± 2.1 mmHg in RUPP (n = 22; P < 0.0001) and to 110.8 ± 2.8 mmHg in NP+RUPP TH17 (n = 11). Pup weights in NP+RUPP TH17s were decreased to 1.92 ± 0.09 g from 2.39 ± 0.14 in NP rats (P < 0.01). AT1-AA significantly increased from 0.1 ± 0.2 beats/min in NP to 15.6 ± 0.7 beats/min in NP+RUPP TH17s. IL-6 was 22.3 ± 5.7 pg/ml in NP and increased to 60.45 ± 13.8 pg/ml in RUPP (P < 0.05) and 75.9 ± 6.8 pg/ml in NP+RUPP TH17 rats (P < 0.01). Placental and renal oxidative stress were 238 ± 27.5 and 411 ± 129.9 relative light units·min-1·mg-1 in NP and 339 ± 104.6 and 833 ± 331.1 relative light units·min-1·mg-1 in NP+RUPP TH17, respectively. In conclusion, RUPP TH17 cells induced intrauterine growth restriction and increased blood pressure, AT1-AA, IL-6, and tissue oxidative stress when transferred to NP rats, indicating a role for autoimmune associated TH17 cells, to cause much of the pathophysiology associated with preeclampsia.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

Serelaxin improves the pathophysiology of placental ischemia in the reduced uterine perfusion pressure rat model of preeclampsia

Jose Santiago-font; Lorena M. Amaral; Jessica L. Faulkner; Tarek Ibrahim; Venkata Ramana Vaka; Mark W. Cunningham; Babbette LaMarca

Preeclampsia is a hypertensive disorder of pregnancy that has limited therapeutic options. In healthy pregnancy, relaxin plays an important vasodilatory role to maintain vascular compliance; however, currently, there is no preclinical evidence to support the use of relaxin during preeclampsia. Therefore, the goal of this study was to test the hypothesis that recombinant human relaxin-2 (Serelaxin, Novartis; RLX) could reduce mean arterial pressure (MAP) and improve uterine artery resistance index (UARI) and nitric oxide bioavailability, and/or decrease prepro-endothelin-1 (PPET-1), soluble fms-like tyrosine kinase-1 (sFlt-1), and TNF-α) in the reduced uterine perfusion pressure (RUPP) model of preeclampsia. On day 14 of gestation (GD14), pregnant rats were assigned to normal pregnant (NP), RUPP, RUPP+RLX, or NP+RLX groups. Treated rats received RLX at 0.4 μg/h or RLX2 4 μg/h RLX via minipump implanted on GD14. On GD18, carotid arterial catheters were inserted, and on GD19, MAP and tissues were collected. MAP was increased in RUPP rats compared with NP but was lowered with either dose of RLX. UARI and sFlt-1 were significantly improved in both treated RUPP groups. Total circulating nitrate-nitrite improved and placental PPET-1 and TNF-α were significantly decreased with the higher dose of RLX. Renal cortex PPET-1 was reduced with both doses of RLX. In conclusion, Serelaxin improved blood pressure, sFlt-1, TNF-α, UARI, and nitric oxide bioavailability and PPET-1 in a rat model of preeclampsia, thereby suggesting a potential therapeutic role for RLX in maintaining maternal health and prolonging pregnancy in the face of placental ischemia.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Blockade of CD40 ligand for intercellular communication reduces hypertension, placental oxidative stress, and AT1-AA in response to adoptive transfer of CD4+ T lymphocytes from RUPP rats.

Denise C. Cornelius; Javier Castillo; Justin Porter; Lorena M. Amaral; Nathan Campbell; Adrienne Paige; Alexia Thomas; Ashlyn Harmon; Mark W. Cunningham; Kedra Wallace; Florian Herse; Gerd Wallukat; Ralf Dechend; Babbette LaMarca

Preeclampsia (PE) is associated with altered immune activation during pregnancy. We have previously shown that adoptive transfer of CD4(+) T cells from the reduced uterine perfusion pressure (RUPP) rat model of PE increases blood pressure, oxidative stress (ROS), and inflammation in normal pregnant recipient rats. The objective of this study was to determine if blockade of communication via the CD40-CD40 ligand (CD40L) interaction between placental ischemia-induced CD4(+) T cells with endogenous normal pregnant (NP) cells would improve pathophysiology that was previously observed in NP recipient rats of RUPP CD4(+) T cells. Splenic CD4(+) T lymphocytes were magnetically separated, incubated with 2.5 μg/ml anti-CD40 ligand (αCD40L) overnight, and transferred into NP rats on day 12 of gestation (NP+RUPP CD4(+) T+anti-CD40L). On day 19 of gestation, blood pressure (MAP), blood, and tissues were collected. MAP was 99 ± 2 in NP (n = 13), 116 ± 4 in NP+RUPP CD4(+) T cells (n = 7; P < 0.01); MAP only increased to 104 ± 2 in NP+RUPP CD4(+) T cells+CD40L (n = 24) (P < 0.05 vs. NP+RUPP CD4(+) T cells). Mechanisms of hypertension in response to RUPP CD4(+) T cells include endothelin-1 (ET-1), ROS, and angiotensin II type I receptor (AT1-AA) were analyzed. Inhibition of CD40L binding reduced placental ET-1 to 2.3-fold above NP rats and normalized placental ROS from 318.6 ± 89 in NP+RUPP CD4(+) T cells (P < 0.05) to 118.7 ± 24 in NP+RUPP CD4(+) T+anti-CD40L (P < 0.05). AT1-AA was also normalized with inhibition of CD40L. These data suggest that placental ischemia-induced T-cell communication via the CD40L is one important mechanism leading to much of the pathophysiology of PE.

Collaboration


Dive into the Lorena M. Amaral's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise C. Cornelius

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Janae Moseley

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Mark W. Cunningham

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kedra Wallace

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Jessica L. Faulkner

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ashlyn Harmon

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tarek Ibrahim

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerd Wallukat

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge