Lorena Rodriguez
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorena Rodriguez.
British Journal of Pharmacology | 2006
Lorena Rodriguez; Gabriela Di Venosa; Sinan Battah; Paul S. Dobbin; Alexander J. MacRobert; Adriana Casas
The porphyrin precursor 5‐aminolevulinic acid (ALA) is being widely used in photodynamic therapy of cancer. Improvement in ALA delivery has been sought through the use of ALA derivatives, in particular the esterification of ALA with aliphatic alcohols, which in certain cases can improve cellular penetration and selectivity. ALA uptake systems appear to be distinctive for each cell type. The LM3 mammary adenocarcinoma cell line takes ALA up by BETA transporters. In this work, we investigated ALA derivative transport systems through the inhibition of radiolabelled ALA uptake in the LM3 cells. We also performed inhibition studies of γ‐aminobutyric acid (GABA) uptake. The more lipohilic ALA derivatives hexyl‐ALA and undecanoyl‐ALA inhibit ALA uptake, whereas methyl‐ALA, R, S‐ALA‐2‐(hydroxymethyl)tetrahydropyranyl ester and the dendron aminomethane tris methyl 5‐ALA does not inhibit ALA uptake. A similar pattern was found for GABA, except that the dendron inhibited GABA uptake. However, hexyl‐ALA and undecanoyl‐ALA are not taken up by BETA transporters, but by simple diffusion, although they still inhibit ALA uptake by binding to the cell membrane. These results show that different modifications to the ALA molecule lead to different uptake mechanisms. Whereas ALA is taken up by BETA transporters, none of the ALA derivatives shares the same mechanism. Knowledge of the mechanisms of ALA derivatives entry into the cells is essential to understand and improve ALA‐mediated PDT and to the design of new ALA derivatives that may be taken up at a higher rate than ALA.
Journal of Controlled Release | 2009
Adriana Casas; Sinan Battah; Gabriela Di Venosa; Paul S. Dobbin; Lorena Rodriguez; Haydée Fukuda; Alexander J. MacRobert
The use of endogenous protoporphyrin IX (PpIX) after administration of 5-aminolaevulinic acid (ALA) has led to many applications in photodynamic therapy (PDT). However the efficacy of ALA-PDT is sub-optimal for thicker tumours and improved ALA delivery and therapeutic response are required. We have investigated the conjugation of ALA to a second-generation dxcendrimer for enhancing porphyrin synthesis in vitro and in vivo in a murine tumour model using systemic i.p. administration. In vitro, the dendrimer was more efficient than ALA for porphyrin synthesis at low concentrations in good correlation with higher cellular ALA dendrimer accumulation. In vivo, the porphyrin kinetics from ALA exhibited an early peak between 3 and 4 h in most tissues, whereas the dendrimer induced sustained porphyrin production for over 24 h and basal values were not reached until 48 h after administration. Integrated porphyrin accumulation from the dendrimer and ALA, at equivalent molar ratios, was comparable showing that the majority of ALA residues were liberated from the dendrimer. The porphyrin kinetics appear to be governed by the rate of enzymatic cleavage of ALA from the dendrimer, which is consistent with in vitro results. ALA dendrimers may be useful for metronomic PDT, and multiple low-dose ALA-PDT treatments.
Journal of Photochemistry and Photobiology B-biology | 2008
Gabriela Di Venosa; Laura Hermida; Haydée Fukuda; María Victoria Defain; Leandro Mamone; Lorena Rodriguez; Alexander J. MacRobert; Adriana Casas
Liposomes of different compositions have been designed to improve delivery of aminolevulinic acid (ALA) and its esterified derivatives ALA-Hexyl ester (He-ALA) and ALA-Undecanoyl ester (Und-ALA) for its use in photodynamic therapy (PDT). Egg yolk phosphatidyl choline (PC), phosphatidic acid (PA) and phosphatidyl glycerol (PG) were employed in the preparation of the liposomes. Sonicated vesicles composed of PC, PC-PG (80:20) or PC-PA (80:20) containing ALA or derivatives were obtained and purified by a minicolumn centrifugation method. PC liposomes presented encapsulation percentages around 6% for 2 mM ALA, 13% for 2 mM He-ALA and 51% for 2 mM Und-ALA. The addition of PG or PA to the formulation, resulted in an increased entrapment: 19% for 2 mM ALA, 69% for 2 mM He-ALA and 87% for 2 mM Und-ALA in PC-PG liposomes and 21% for 2 mM ALA, 60% for 2 mM He-ALA and 87% for 2 mM Und-ALA in PC-PA liposomes. Higher concentrations of ALA or derivatives resulted in lower percentages of entrapment. The three formulations containing ALA or derivatives were stable up to 1 week upon storage at 4 degrees C. However, upon dilution with medium, ALA leaked from the liposomes, while on the contrary, He-ALA was highly retained, being therefore a good choice for its use in PDT. The stability of Und-ALA upon dilution could not be tested, but Und-ALA proved to have the highest entrapment efficacy.
Cancer Letters | 2008
Adriana Casas; Francisco Sanz-Rodríguez; Gabriela Di Venosa; Lorena Rodriguez; Leandro Mamone; Alfonso Blázquez; Pedro Jaén; Juan C. Stockert; Angeles Juarranz
The appearance of cells resistant to photodynamic therapy (PDT) is crucial for the outcome of this antitumoral treatment. We had previously isolated two sublines resistant to PDT derived from the mammary adenocarcinoma LM3 [A. Casas, C. Perotti, B. Ortel, G. Di Venosa, M. Saccoliti, A. Batlle, T. Hasan, Induction of murine tumour cell lines resistant to ALA-mediated Photodynamic Therapy, Int. J. Oncol. 29 (2006) 397-405.]. These clones have severely impaired its metastatic potential in vivo together with decreased general anchorage-dependent adhesion and invasion. In the present work we analyzed the differential expression and distribution of cytoskeleton and adhesion proteins in these cell lines. In both resistant clones, loss of actin stress fibers and disorganization of the actin cortical rim was observed. E-cadherin and beta-catenin and vinculin distribution was also disorganized. However, Western blot assays did not show differential expression of actin, E-cadherin, vinculin or beta-catenin. It was demonstrated that PDT strongly affects cell-cell and cell-substrate adhesion through the reorganization of some cytoskeletal and adhesion proteins. Changes in the metastasis phenotypes previously found are likely to be ascribed to these differences.
Cancer Letters | 2008
Adriana Casas; Gabriela Di Venosa; Silvia Vanzulli; Christian Perotti; Leandro Mamome; Lorena Rodriguez; Marina Simian; Angeles Juarranz; Osvaldo Pontiggia; Tayyaba Hasan
Photodynamic therapy (PDT) is a novel cancer treatment utilising a photosensitiser, visible light and oxygen. PDT often leaves a significant number of surviving tumour cells. In a previous work, we isolated and studied two PDT resistant clones derived from the mammary adenocarcinoma LM3 line (Int. J. Oncol. 29 (2006) 397-405). The isolated Clon 4 and Clon 8 exhibited a more fibroblastic, dendritic pattern and were larger than the parentals. In the present work we studied the metastatic potential of the two clones in comparison with LM3. We found that 100% of LM3 invaded Matrigel, whereas only 19+/-6% and 24+/-7% of Clon 4 and Clon 8 cells invaded. In addition, 100% of LM3 cells migrated towards a chemotactic stimulus whereas 38+/-8% and 73+/-10% of Clones 4 and 8, respectively, were able to migrate. In vivo, 100% of the LM3 injected mice developed spontaneous lung metastasis, whereas none of the Clon 8 did, and only one of the mice injected with Clon 4 did. No differences were found in the proteolytic enzyme profiles among the cells. Anchorage-dependent adhesion was also impaired in vivo in the resistant clones, evidenced by the lower tumour take, latency time and growth rates, although both clones showed in vitro higher binding to collagen I without overexpression of beta1 integrin. This is the first work where the metastatic potential of cells surviving to PDT has been studied. PDT strongly affects the invasive phenotype of these cells, probably related to a higher binding to collagen. These findings may be crucial for the outcome of ALA-PDT of metastatic tumours, although further studies are needed to extrapolate the results to the clinic employing another photosensitisers and cell types.
Journal of Photochemistry and Photobiology B-biology | 2009
Lorena Rodriguez; Henriëtte S. de Bruijn; Gabriela Di Venosa; Leandro Mamone; Dominic J. Robinson; Angeles Juarranz; Adriana Casas
Photodynamic therapy (PDT) may cause tumour cell destruction by direct toxicity or by inducing microcirculatory shutdown. Protoporphyrin IX generated from 5-aminolevulinic acid (ALA) has been widely used as an endogenous photosensitiser in PDT. However, the hydrophilic nature of the ALA molecule limits its penetration through the stratum corneum of the skin and cell membranes and thus, ALA alkyl-esters have been developed to improve ALA permeation. The aim of this work was to study Protoporphyrin IX synthesis from ALA and its derivatives ALA methyl ester (Me-ALA) and ALA hexyl ester (He-ALA) in the microvascular endothelial cell line HMEC-1 derived from normal skin, and to evaluate their response to PDT. We found that lower light doses are required to photosensitise HMEC-1 endothelial cells than to photosensitise PAM212 transformed keratinocytes, showing some possible selectivity of ALA-PDT for vascularisation in skin. Employed at concentrations leading to equal Protoporphyrin IX synthesis, ALA, He-ALA and Me-ALA presented the same efficacy of HMEC-1 photosensitisation. However, He-ALA was a promising compound for the use in the enhancement of Protoporphyrin IX in HMEC-1 cells employed at low concentrations at both short and long time exposures whereas Me-ALA should be employed at high concentrations and longer time periods in order to surpass the Protoporphyrin IX levels obtained with ALA. The advantage of Me-ALA over ALA was based on its lower dark toxicity. This is the first work to report vascular cell photosensitisation employing alkyl-esters of ALA, and we demonstrated that these derivatives could exert the same effect as ALA and under certain conditions enhance photosensitisation of vasculature.
Journal of Photochemistry and Photobiology B-biology | 2009
Gabriela Di Venosa; Laura Hermida; Haydée Fukuda; María Victoria Defain; Lorena Rodriguez; Leandro Mamone; Alexander J. MacRobert; Adriana Casas
ALA administration has been used to induce the endogenous photosensitiser Protoporphyrin IX for photodynamic therapy (PDT) of tumours. However, the hydrophilic nature of ALA limits its ability to penetrate through skin restricting the use of ALA-PDT to superficial diseases. Lipophilic derivatives of ALA such as ALA Undecanoyl ester (Und-ALA) were designed to have better diffusing properties. However, Und-ALA, applied topically on the skin over the tumour, induced low porphyrin content. To improve Und-ALA efficacy we tested the efficacy of Und-ALA as porphyrin inducer, delivered in phosphatidylcholine and phosphatidylglycerol (PC-PG) or phosphatidylcholine and phosphatidic acid (PC-PA) liposomal formulations. Entrapment of Und-ALA into PC-PA or PC-PG liposomes resulted in a dramatic impairment of toxicity in the mammary tumour LM3 cells. However, liposomal Und-ALA induced lower intracellular porphyrin content compared to free ALA, although total porphyrins content (intracellular+media) from free Und-ALA resulted equal compared to liposomal Und-ALA, due to induction of porphyrins release induced by the latter. Topical administration of Und-ALA in PC-PG or PC-PA liposomes over the skin of LM3 subcutaneously injected mice, induced equal amount of tumour porphyrins as compared to free Und-ALA. The kinetics of porphyrins synthesis from Und-ALA is similar for free and liposomal formulations both in vivo and in vitro, showing that release of Und-ALA from liposomes is not gradual and suggesting that liposome membranes either fuses or binds to the cell membranes. To sum up, the incorporation of Und-ALA into liposomes of PC-PA or PC-PG composition does not improve the rate of porphyrin synthesis either in vitro or in vivo, due to a massive release of extracellular porphyrins and a poor cytoplasmatic release of the liposome content. The design of new liposome compositions either favouring endocytosis or coated with natural polymers to prevent Und-ALA interaction with cellular membrane are desired to overcome intracellular porphyrin release after long-chained ALA esters treatment.
Journal of Photochemistry and Photobiology B-biology | 2014
L. Gándara; Eduardo Sandes; G. Di Venosa; B. Prack Mc Cormick; Lorena Rodriguez; Leandro Mamone; Ana María Eiján; Adriana Casas
Photodynamic Therapy (PDT) is an anticancer treatment based on photosensitisation of malignant cells. The precursor of the photosensitiser Protoporphyrin IX, 5-aminolevulinic acid (ALA), has been used for PDT of bladder cancer. Silybin is a flavonoid extracted from Silybum marianum, and it has been reported to increase the efficacy of several anticancer treatments. In the present work, we evaluated the cytotoxicity of the combination of ALA-PDT and silybin in the T24 and MB49 bladder cancer cell lines. MB49 cells were more sensitive to PDT damage, which was correlated with a higher Protoporphyrin IX production from ALA. Employing lethal light doses 50% (LD50) and 75% (LD75) and additional silybin treatment, there was a further increase of toxicity driven by PDT in both cell lines. Using the Chou-Talalay model for drug combination derived from the mass-action law principle, it was possible to identify the effect of the combination as synergic when using LD75, whilst the use of LD50 led to an additive effect on MB49 cells. On the other hand, the drug combination turned out to be nearly additive on T24 cells. Apoptotic cell death is involved both in silybin and PDT cytotoxicity in the MB49 line but there is no apparent correlation with the additive or synergic effect observed on cell viability. On the other hand, we found an enhancement of the PDT-driven impairment of cell migration on both cell lines as a consequence of silybin treatment. Overall, our results suggest that the combination of silybin and ALA-PDT would increase PDT outcome, leading to additive or synergistic effects and possibly impairing the occurrence of metastases.
Cellular and Molecular Biology | 2011
Leandro Mamone; G. Di venosa; J. J. Valla; Lorena Rodriguez; L. Gándara; Alcira Batlle; Michael Heinrich; Angeles Juarranz; F. Sanz rodriguez; Adriana Casas
In the search for possible new anti-cancer agents, we investigated the effects of 75 aqueous and methanol extracts from 41 Argentinean plant species. The effect in cell growth was evaluated in the LM2 mammary adenocarcinoma cells. In a second stage, the highly active selected extracts were assayed in 3 other tumour cell lines: melanoma B16, bladder MB49 and lung A549; and 3 normal cell lines: mammary Hb4a and keratinocytes PAM212 and HaCat. Eight methanol extracts were found to be highly cytotoxic: Collaea argentina leaf, Iochroma australe leaf, Ipomoea bonariensis flower, Jacaranda mimosifolia flower, Solanum amygdalifolium flower, Solanum chacoense leaf, Solanum sisymbriifolium flower and Solanum verbascifolium flower. However, extract inhibition on cell growth was highly dependent on cell type. In general, except for the highly resistant cell lines, the inhibitory concentrations 50% were in the range of 10-150 μg/ml The eight extracts highly inhibited cell growth in a concentration-dependent manner, and in general the methanol extracts were always more active than the aqueous. Murine cells appear to be more sensitive than human cells to the cytotoxic action of the plant extracts. The human melanoma B16 line was the most resistant to four of the extracts. In terms of selectivity, S. verbascifolium was the species which showed most selectivity for tumour cells. Overall, this is one of the first studies focusing on southern South American native plants and their biological effects. Since some species of 5 genera analyzed have been reported to possess different degrees of alkaloid content, we examined microtubule structures after extract treatments. The eight extracts induced destabilization, condensation and aggregation of microtubules in LM2 cells, although no depolarization, typical of Vinca alkaloids damage was observed. In a near future, antitumour activity of purified fractions of the extracts administered at non-toxic doses will be assayed in transplantable murine tumour models.
Journal of Photochemistry and Photobiology B-biology | 2012
G. Di Venosa; Lorena Rodriguez; Leandro Mamone; L. Gándara; M.V. Rossetti; Adriana Casas
Photodynamic therapy (PDT) is an anticancer treatment based on light-induced destruction of photosensitised malignant cells. It has been reported that PDT strongly affects cell-cell and cell-substrate adhesion through the reorganization of some cytoskeletal and adhesion proteins. The aim of the present work was to study the changes induced by PDT employing aminolevulinic acid (ALA), on the cytoskeleton actin network and E-cadherin expression. We employed the normal mammary HB4a cell line and its tumor counterpart transfected with the oncogene H-Ras, which has been shown to be resistant to PDT. Ras insertion induces per se disorganization of both F-actin and E-cadherin distribution. ALA-PDT induces on HB4a cells a dramatic disorganization of actin stress fibers, resembling normal Ras-transfected cells. After 48h some features of disorganization remain present. In HB4a-Ras cells, F-actin exhibits signals of photodamage, but distribution is recovered 24h after treatment. On the other hand, PDT did not impact on E-cadherin distribution, other than a transient disorganization, which was recovered at 24h. Moreover, E-cadherin disorganization did not favoured cell-cell detachment after PDT of HB4a-Ras cells. Actin but not E-cadherin constitutes in this model an important target of PDT. The fact that some features of microfilament disorganization remain present in HB4a surviving cells but not in Ras-transfected cells, suggests that cytoskeletal structures such as F-actin may be involved in the mechanisms of resistance to PDT.