Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorena Zentilin is active.

Publication


Featured researches published by Lorena Zentilin.


Nature | 2012

Functional screening identifies miRNAs inducing cardiac regeneration

Ana Eulalio; Miguel Mano; Matteo Dal Ferro; Lorena Zentilin; Gianfranco Sinagra; Serena Zacchigna; Mauro Giacca

In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.


Gene | 1992

A novel procedure for quantitative polymerase chain reaction by coamplification of competitive templates

Silvia Diviacco; Paolo Norio; Lorena Zentilin; Stefano Menzo; Massimo Clementi; Giuseppe Biamonti; Silvano Riva; Arturo Falaschi; Mauro Giacca

A method is described for the absolute quantification by polymerase chain reaction (PCR) of nucleic acids present in low abundance. The method entails the addition to the sample of competitor DNA molecules that share the same sequence as the amplified target (including primer recognition sites), except for a 20-bp insertion in the middle, which allows easy resolution by gel electrophoresis (competitive PCR). Among the advantages of competitive PCR is that any predictable or unpredictable variable that affects amplification has the same effect on both target and competitor species and that the final ratio of amplified products reflects exactly the initial rate of targets, rendering the reaction independent of the number of amplification cycles. An easy and reliable method for the construction and quantification of competitive templates obtained as recombinant PCR products was developed. The technique was used for the absolute quantification of human genomic DNA with primers from a single copy, subtelomeric region of chromosome 19.


Journal of Clinical Investigation | 2009

Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models

Federica Maione; Fabiola Molla; Claudia Meda; Roberto Latini; Lorena Zentilin; Mauro Giacca; Giorgio Seano; Guido Serini; Federico Bussolino; Enrico Giraudo

Tumor growth and progression rely upon angiogenesis, which is regulated by pro- and antiangiogenic factors, including members of the semaphorin family. By analyzing 3 different mouse models of multistep carcinogenesis, we show here that during angiogenesis, semaphorin 3A (Sema3A) is expressed in ECs, where it serves as an endogenous inhibitor of angiogenesis that is present in premalignant lesions and lost during tumor progression. Pharmacologic inhibition of endogenous Sema3A during the angiogenic switch, the point when pretumoral lesions initiate an angiogenic phase that persists throughout tumor growth, enhanced angiogenesis and accelerated tumor progression. By contrast, when, during the later stages of carcinogenesis following endogenous Sema3A downmodulation, Sema3A was ectopically reintroduced into islet cell tumors by somatic gene transfer, successive waves of apoptosis ensued, first in ECs and then in tumor cells, resulting in reduced vascular density and branching and inhibition of tumor growth and substantially extended survival. Further, long-term reexpression of Sema3A markedly improved pericyte coverage of tumor blood vessels, something that is thought to be a key property of tumor vessel normalization, and restored tissue normoxia. We conclude, therefore, that Sema3A is an endogenous and effective antiangiogenic agent that stably normalizes the tumor vasculature.


Gene Therapy | 2002

Recombinant AAV vector encoding human VEGF165 enhances wound healing.

B. Deodato; Nikola Arsic; Lorena Zentilin; M Galeano; D Santoro; V Torre; D Altavilla; Donatella Valdembri; Federico Bussolino; F Squadrito; Mauro Giacca

Delivery of therapeutic genes represents an appealing possibility to accelerate healing of wounds that are otherwise difficult to treat, such as those in patients with metabolic disorders or infections. Experimental evidence indicates that in such conditions potentiation of neo-angiogenesis at the wound site might represent an important therapeutic target. Here we explore the efficacy of gene therapy of wound healing with an adeno-associated virus (AAV) vector expressing the 165 amino acid isoform of vascular endothelial growth factor-A (VEGF-A). By gene marker studies, we found that AAV vectors are highly efficient for gene transfer to the rat skin, displaying an exquisite tropism for the panniculus carnosus. Gene expression from these vectors is sustained and persistent over time. Delivery of VEGF165 to full thickness excisional wounds in rats resulted in remarkable induction of new vessel formation, with consequent reduction of the healing time. Histological examination of treated wounds revealed accelerated remodeling of epidermis and dermis, with formation of a thick granular layer, containing numerous newly formed capillaries, as well as vessels of larger size. These data underline the importance of neo-angiogenesis in the healing process and indicate that VEGF gene transfer might represent a novel approach to treat wound healing disorders.


The FASEB Journal | 2010

Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction

Lorena Zentilin; Uday Puligadda; Vincenzo Lionetti; Serena Zacchigna; Chiara Collesi; Lucia Pattarini; Giulia Ruozi; Silvia Camporesi; Gianfranco Sinagra; Martino Pepe; Fabio A. Recchia; Mauro Giacca

Mounting evidence indicates that the function of members of the vascular endothelial growth factor (VEGF) family extends beyond blood vessel formation. Here, we show that the prolonged intramyocardial expression of VEGF‐A165 and VEGF‐B167 on adeno‐associated virus‐mediated gene delivery determined a marked improvement in cardiac function after myocardial infarction in rats, by promoting cardiac contractility, preserving viable cardiac tissue, and preventing remodeling of the left ventricle (LV) over time. Consistent with this functional outcome, animals treated with both factors showed diminished fibrosis and increased contractile myocardium, which were more pronounced after expression of the selective VEGF receptor‐1 (VEGFR‐1) ligand VEGF‐B, in the absence of significant induction of angiogenesis. We found that cardiomyocytes expressed VEGFR‐1, VEGFR‐2, and neuropilin‐1 and that, in particular, VEGFR‐1 was specifically up‐regulated in hypoxia and on exposure to oxidative stress. VEGF‐B exerted powerful antiapoptotic effect in both cultured cardiomyocytes and after myocardial infarction in vivo. Finally, VEGFR‐1 activation by VEGF‐B was found to elicit a peculiar gene expression profile proper of the compensatory, hypertrophic response, consisting in activation of αMHC and repression of βMHC and skeletal α‐actin, and an increase in SERCA2a, RYR, PGC1α, and cardiac natriuretic peptide transcripts, both in cultured cardiomyocytes and in infarcted hearts. The finding that VEGFR‐1 activation by VEGF‐B prevents loss of cardiac mass and promotes maintenance of cardiac contractility over time has obvious therapeutic implications.—Zentilin, L., Puligadda, U., Lionetti, V., Zacchigna, S., Collesi, C., Pattarini, L., Ruozi, G., Camporesi, S., Sinagra, G., Pepe, M., Recchia, F. A., Giacca, M. Cardiomyocyte VEGFR‐1 activation by VEGF‐B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 24, 1467–1478 (2010). www.fasebj.org


Molecular Therapy | 2003

Induction of Functional Neovascularization by Combined VEGF and Angiopoietin-1 Gene Transfer Using AAV Vectors

Nikola Arsic; Lorena Zentilin; Serena Zacchigna; Daniela Santoro; Giorgio Stanta; Alessandro Salvi; Gianfranco Sinagra; Mauro Giacca

Vectors based on the adeno-associated virus (AAV) deliver therapeutic genes to muscle and heart at high efficiency and maintain transgene expression for long periods of time. Here we report about the synergistic effect on blood vessel formation of AAV vectors expressing the 165 aa isoform of vascular endothelial growth factor (VEGF165), a powerful activator of endothelial cells, and of angiopoietin-1 (Ang-1), which is required for vessel maturation. High titer AAV-VEGF165 and AAV-Ang-1 vector preparations were injected either alone or in combination in the normoperfused tibialis anterior muscle of rats. Long term expression of VEGF165 determined massive cellular infiltration of the muscle tissues over time, with the formation of a large set of new vessels. Strikingly, some of the cells infiltrating the treated muscles were found positive for markers of activated endothelial precursors (VEGFR-2/KDR and Tie-2) and for c-kit, an antigen expressed by pluripotent bone marrow stem cells. Expression of VEGF165 eventually resulted in the formation of structured vessels surrounded by a layer of smooth muscle cells. Presence of these arteriolae correlated with significantly increased blood perfusion in the injected areas. Co-expression of VEGF165 with angiopoietin-1-which did not display angiogenic effect per se-remarkably reduced leakage of vessels produced by VEGF165 alone.


Circulation | 2013

MiR-378 Controls Cardiac Hypertrophy by Combined Repression of Mitogen-Activated Protein Kinase Pathway Factors

Jayavarshni Ganesan; Deepak Ramanujam; Yassine Sassi; Andrea Ahles; Claudia Jentzsch; Stanislas Werfel; Simon Leierseder; Xavier Loyer; Mauro Giacca; Lorena Zentilin; Thomas Thum; Bernhard Laggerbauer; Stefan Engelhardt

Background— Several microRNAs (miRs) have been shown to regulate gene expression in the heart, and dysregulation of their expression has been linked to cardiac disease. miR-378 is strongly expressed in the mammalian heart but so far has been studied predominantly in cancer, in which it regulates cell survival and tumor growth. Methods and Results— Here, we report tight control of cardiomyocyte hypertrophy through miR-378. In isolated primary cardiomyocytes, miR-378 was found to be both necessary and sufficient to repress cardiomyocyte hypertrophy. Bioinformatic prediction suggested that factors of the mitogen-activated protein kinase (MAPK) pathway are enriched among miR-378 targets. Using mRNA and protein expression analysis along with luciferase assays, we validated 4 key components of the MAPK pathway as targets of miR-378: MAPK1 itself, insulin-like growth factor receptor 1, growth factor receptor-bound protein 2, and kinase suppressor of ras 1. RNA interference with these targets prevented the prohypertrophic effect of antimiR-378, suggesting their functional relation with miR-378. Because miR-378 significantly decreases in cardiac disease, we sought to compensate for its loss through adeno-associated virus–mediated, cardiomyocyte-targeted expression of miR-378 in an in vivo model of cardiac hypertrophy (pressure overload by thoracic aortic constriction). Restoration of miR-378 levels significantly attenuated thoracic aortic constriction–induced cardiac hypertrophy and improved cardiac function. Conclusions— Our data identify miR-378 as a regulator of cardiomyocyte hypertrophy, which exerts its activity by suppressing the MAPK signaling pathway on several distinct levels. Restoration of disease-associated loss of miR-378 through cardiomyocyte-targeted adeno-associated virus–miR-378 may prove to be an effective therapeutic strategy in myocardial disease.


Circulation | 2013

MiR-378 Controls Cardiac Hypertrophy by Combined Repression of MAP Kinase Pathway Factors

Jayavarshni Ganesan; Deepak Ramanujam; Yassine Sassi; Andrea Ahles; Claudia Jentzsch; Stanislas Werfel; Simon Leierseder; Xavier Loyer; Mauro Giacca; Lorena Zentilin; Thomas Thum; Bernhard Laggerbauer; Stefan Engelhardt

Background— Several microRNAs (miRs) have been shown to regulate gene expression in the heart, and dysregulation of their expression has been linked to cardiac disease. miR-378 is strongly expressed in the mammalian heart but so far has been studied predominantly in cancer, in which it regulates cell survival and tumor growth. Methods and Results— Here, we report tight control of cardiomyocyte hypertrophy through miR-378. In isolated primary cardiomyocytes, miR-378 was found to be both necessary and sufficient to repress cardiomyocyte hypertrophy. Bioinformatic prediction suggested that factors of the mitogen-activated protein kinase (MAPK) pathway are enriched among miR-378 targets. Using mRNA and protein expression analysis along with luciferase assays, we validated 4 key components of the MAPK pathway as targets of miR-378: MAPK1 itself, insulin-like growth factor receptor 1, growth factor receptor-bound protein 2, and kinase suppressor of ras 1. RNA interference with these targets prevented the prohypertrophic effect of antimiR-378, suggesting their functional relation with miR-378. Because miR-378 significantly decreases in cardiac disease, we sought to compensate for its loss through adeno-associated virus–mediated, cardiomyocyte-targeted expression of miR-378 in an in vivo model of cardiac hypertrophy (pressure overload by thoracic aortic constriction). Restoration of miR-378 levels significantly attenuated thoracic aortic constriction–induced cardiac hypertrophy and improved cardiac function. Conclusions— Our data identify miR-378 as a regulator of cardiomyocyte hypertrophy, which exerts its activity by suppressing the MAPK signaling pathway on several distinct levels. Restoration of disease-associated loss of miR-378 through cardiomyocyte-targeted adeno-associated virus–miR-378 may prove to be an effective therapeutic strategy in myocardial disease.


Circulation Research | 2006

Adeno-Associated Virus-Mediated Transduction of VEGF165 Improves Cardiac Tissue Viability and Functional Recovery After Permanent Coronary Occlusion in Conscious Dogs

Matteo Ferrarini; Nikola Arsic; Fabio A. Recchia; Lorena Zentilin; Serena Zacchigna; Xiaobin Xu; Axel Linke; Mauro Giacca; Thomas H. Hintze

We have previously shown that VEGF165 gene delivery into ischemic skeletal muscle exerts not only proangiogenic, but also remarkable antiapoptotic and proregenerative activity. The aim of this study was to determine whether recombinant adeno-associated virus (rAAV)-mediated gene delivery of VEGF165 into cardiac muscle, during acute myocardial infarction, exerts a protective effect to promote long-term functional recovery. Acute infarction of the anterior LV wall was induced in 12 chronically instrumented dogs by permanent occlusion of the LAD coronary artery. Four hours after occlusion, rAAV-VEGF165 or rAAV-LacZ (n=6 each; 5×1012 viral particles per animal) was directly injected with an echo-guided needle into the dysfunctional cardiac wall. LV and arterial pressure, dP/dtmax, and ejection fraction were not significantly different between the two groups over time. In contrast, in the infarcted region, at four weeks after infarction, fractional shortening was 75±18% and −3±15% of baseline and length-pressure area was 54±15% and 0.8±15% of baseline in VEGF165 versus LacZ, respectively (P<0.05). Histological analysis of the border regions showed a marked increase in the number of α-SMA-positive arterioles (68±2.8 versus 100±3.8 vessels per microscopic field in LacZ and VEGF165 group, respectively; P<0.05). In both groups, the receptor VEGFR-2 was diffusely expressed on the surviving cardiomyocytes and, consistently, myocardial viability was significantly improved in the VEGF165-treated group, with several troponin T-expressing cardiomyocytes displaying nuclear positivity for the proliferation marker PCNA. Altogether, our results indicate that VEGF165 gene delivery exerts a marked beneficial action by enhancing both arteriologenesis and cardiomyocyte viability in infarcted myocardium.


Journal of Clinical Investigation | 2012

Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice

Federica Maione; Stefania Capano; Donatella Regano; Lorena Zentilin; Mauro Giacca; Oriol Casanovas; Federico Bussolino; Guido Serini; Enrico Giraudo

Cancer development, progression, and metastasis are highly dependent on angiogenesis. The use of antiangiogenic drugs has been proposed as a novel strategy to interfere with tumor growth, but cancer cells respond by developing strategies to escape these treatments. In particular, animal models show that antiangiogenic drugs currently used in clinical settings reduce tumor tissue oxygenation and trigger molecular events that foster cancer resistance to therapy. Here, we show that semaphorin 3A (Sema3A) expression overcomes the proinvasive and prometastatic resistance observed upon angiogenesis reduction by the small-molecule tyrosine inhibitor sunitinib in both pancreatic neuroendocrine tumors (PNETs) in RIP-Tag2 mice and cervical carcinomas in HPV16/E2 mice. By improving cancer tissue oxygenation and extending the normalization window, Sema3A counteracted sunitinib-induced activation of HIF-1α, Met tyrosine kinase receptor, epithelial-mesenchymal transition (EMT), and other hypoxia-dependent signaling pathways. Sema3A also reduced tumor hypoxia and halted cancer dissemination induced by DC101, a specific inhibitor of the VEGF pathway. As a result, reexpressing Sema3A in cancer cells converts metastatic PNETs and cervical carcinomas into benign lesions. We therefore suggest that this strategy could be developed to safely harnesses the therapeutic potential of the antiangiogenic treatment.

Collaboration


Dive into the Lorena Zentilin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serena Zacchigna

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikola Arsic

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Moimas

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Arturo Falaschi

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Lucia Pattarini

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Miguel Mano

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Sabrina Tafuro

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge