Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorenz Adrian is active.

Publication


Featured researches published by Lorenz Adrian.


Nature | 2000

Bacterial dehalorespiration with chlorinated benzenes

Lorenz Adrian; Ulrich Szewzyk; Jörg Wecke; Helmut Görisch

Chlorobenzenes are toxic, highly persistent and ubiquitously distributed environmental contaminants that accumulate in the food chain. The only known microbial transformation of 1,2,3,5-tetrachlorobenzene (TeCB) and higher chlorinated benzenes is the reductive dechlorination to lower chlorinated benzenes under anaerobic conditions observed with mixed bacterial cultures. The lower chlorinated benzenes can subsequently be mineralized by aerobic bacteria. Here we describe the isolation of the oxygen-sensitive strain CBDB1, a pure culture capable of reductive dechlorination of chlorobenzenes. Strain CBDB1 is a highly specialized bacterium that stoichiometrically dechlorinates 1,2,3-trichlorobenzene (TCB), 1,2,4-TCB, 1,2,3,4-TeCB, 1,2,3,5-TeCB and 1,2,4,5-TeCB to dichlorobenzenes or 1,3,5-TCB. The presence of chlorobenzene as an electron acceptor and hydrogen as an electron donor is essential for growth, and indicates that strain CBDB1 meets its energy needs by a dehalorespiratory process. According to their 16S rRNA gene sequences, strain CBDB1, Dehalococcoides ethenogenes and several uncultivated bacteria form a new bacterial cluster, of which strain CBDB1 is the first, so far, to thrive on a purely synthetic medium.


Nature | 2003

Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium.

Michael Bunge; Lorenz Adrian; A. Kraus; Matthias Opel; W. Lorenz; Jan R. Andreesen; Helmut Görisch; Ute Lechner

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs and PCDFs) are among the most notorious environmental pollutants. Some congeners, particularly those with lateral chlorine substitutions at positions 2, 3, 7 and 8, are extremely toxic and carcinogenic to humans. One particularly promising mechanism for the detoxification of PCDDs and PCDFs is microbial reductive dechlorination. So far only a limited number of phylogenetically diverse anaerobic bacteria have been found that couple the reductive dehalogenation of chlorinated compounds—the substitution of a chlorine for a hydrogen atom—to energy conservation and growth in a process called dehalorespiration. Microbial dechlorination of PCDDs occurs in sediments and anaerobic mixed cultures from sediments, but the responsible organisms have not yet been identified or isolated. Here we show the presence of a Dehalococcoides species in four dioxin-dechlorinating enrichment cultures from a freshwater sediment highly contaminated with PCDDs and PCDFs. We also show that the previously described chlorobenzene-dehalorespiring bacterium Dehalococcoides sp. strain CBDB1 (ref. 3) is able to reductively dechlorinate selected dioxin congeners. Reductive dechlorination of 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD) demonstrates that environmentally significant dioxins are attacked by this bacterium.


International Journal of Systematic and Evolutionary Microbiology | 2013

Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi.

Frank E. Löffler; Jun Yan; Kirsti M. Ritalahti; Lorenz Adrian; Elizabeth A. Edwards; Konstantinos T. Konstantinidis; Jochen A. Müller; Heather Fullerton; Stephen H. Zinder; Alfred M. Spormann

Six obligately anaerobic bacterial isolates (195(T), CBDB1, BAV1, VS, FL2 and GT) with strictly organohalide-respiring metabolisms were obtained from chlorinated solvent-contaminated aquifers, contaminated and uncontaminated river sediments or anoxic digester sludge. Cells were non-motile with a disc-shaped morphology, 0.3-1 µm in diameter and 0.1-0.2 µm thick, and characteristic indentations on opposite flat sides of the cell. Growth occurred in completely synthetic, reduced medium amended with a haloorganic electron acceptor (mostly chlorinated but also some brominated compounds), hydrogen as electron donor, acetate as carbon source, and vitamins. No other growth-supporting redox couples were identified. Aqueous hydrogen consumption threshold concentrations were <1 nM. Growth ceased when vitamin B(12) was omitted from the medium. Addition of sterile cell-free supernatant of Dehalococcoides-containing enrichment cultures enhanced dechlorination and growth of strains 195 and FL2, suggesting the existence of so-far unidentified stimulants. Dechlorination occurred between pH 6.5 and 8.0 and over a temperature range of 15-35 °C, with an optimum growth temperature between 25 and 30 °C. The major phospholipid fatty acids were 14 : 0 (15.7 mol%), br15 : 0 (6.2 mol%), 16 : 0 (22.7 mol%), 10-methyl 16 : 0 (25.8 mol%) and 18 : 0 (16.6 mol%). Unusual furan fatty acids including 9-(5-pentyl-2-furyl)-nonanoate and 8-(5-hexyl-2-furyl)-octanoate were detected in strains FL2, BAV1 and GT, but not in strains 195(T) and CBDB1. The 16S rRNA gene sequences of the six isolates shared more than 98 % identity, and phylogenetic analysis revealed an affiliation with the phylum Chloroflexi and more than 10 % sequence divergence from other described isolates. The genome sizes and G+C contents ranged from 1.34 to 1.47 Mbp and 47 to 48.9 mol% G+C, respectively. Based on 16S rRNA gene sequence comparisons, genome-wide average nucleotide identity and phenotypic characteristics, the organohalide-respiring isolates represent a new genus and species, for which the name Dehalococcoides mccartyi gen. nov., sp. nov. is proposed. Isolates BAV1 ( = ATCC BAA-2100  = JCM 16839  = KCTC 5957), FL2 ( = ATCC BAA-2098  = DSM 23585  = JCM 16840  = KCTC 5959), GT ( = ATCC BAA-2099  = JCM 16841  = KCTC 5958), CBDB1, 195(T) ( = ATCC BAA-2266(T)  = KCTC 15142(T)) and VS are considered strains of Dehalococcoides mccartyi, with strain 195(T) as the type strain. The new class Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov. are described to accommodate the new taxon.


Nature Biotechnology | 2005

Genome sequence of the chlorinated compound–respiring bacterium Dehalococcoides species strain CBDB1

Michael Kube; Alfred Beck; Stephen H. Zinder; Heiner Kuhl; Richard Reinhardt; Lorenz Adrian

Dehalococcoides species are strictly anaerobic bacteria, which catabolize many of the most toxic and persistent chlorinated aromatics and aliphatics by reductive dechlorination and are used for in situ bioremediation of contaminated sites. Our sequencing of the complete 1,395,502 base pair genome of Dehalococcoides strain CBDB1 has revealed the presence of 32 reductive-dehalogenase-homologous (rdh) genes, possibly conferring on the bacteria an immense dehalogenating potential. Most rdh genes were associated with genes encoding transcription regulators such as two-component regulatory systems or transcription regulators of the MarR-type. Four new paralog groups of rdh-associated genes without known function were detected. Comparison with the recently sequenced genome of Dehalococcoides ethenogenes strain 195 reveals a high degree of gene context conservation (synteny) but exceptionally high plasticity in all regions containing rdh genes, suggesting that these regions are under intense evolutionary pressure.


Philosophical Transactions of the Royal Society B | 2013

Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases

Laura A. Hug; Farai Maphosa; David Leys; Frank E. Löffler; Hauke Smidt; Elizabeth A. Edwards; Lorenz Adrian

Organohalide respiration is an anaerobic bacterial respiratory process that uses halogenated hydrocarbons as terminal electron acceptors during electron transport-based energy conservation. This dechlorination process has triggered considerable interest for detoxification of anthropogenic groundwater contaminants. Organohalide-respiring bacteria have been identified from multiple bacterial phyla, and can be categorized as obligate and non-obligate organohalide respirers. The majority of the currently known organohalide-respiring bacteria carry multiple reductive dehalogenase genes. Analysis of a curated set of reductive dehalogenases reveals that sequence similarity and substrate specificity are generally not correlated, making functional prediction from sequence information difficult. In this article, an orthologue-based classification system for the reductive dehalogenases is proposed to aid integration of new sequencing data and to unify terminology.


Applied and Environmental Microbiology | 2004

Multiple Nonidentical Reductive-Dehalogenase-Homologous Genes Are Common in Dehalococcoides

Tina Hölscher; Rosa Krajmalnik-Brown; Kirsti M. Ritalahti; Friedrich von Wintzingerode; Helmut Görisch; Frank E. Löffler; Lorenz Adrian

ABSTRACT Degenerate primers were used to amplify large fragments of reductive-dehalogenase-homologous (RDH) genes from genomic DNA of two Dehalococcoides populations, the chlorobenzene- and dioxin-dechlorinating strain CBDB1 and the trichloroethene-dechlorinating strain FL2. The amplicons (1,350 to 1,495 bp) corresponded to nearly complete open reading frames of known reductive dehalogenase genes and short fragments (approximately 90 bp) of genes encoding putative membrane-anchoring proteins. Cloning and restriction analysis revealed the presence of at least 14 different RDH genes in each strain. All amplified RDH genes showed sequence similarity with known reductive dehalogenase genes over the whole length of the sequence and shared all characteristics described for reductive dehalogenases. Deduced amino acid sequences of seven RDH genes from strain CBDB1 were 98.5 to 100% identical to seven different RDH genes from strain FL2, suggesting that both strains have an overlapping substrate range. All RDH genes identified in strains CBDB1 and FL2 were related to the RDH genes present in the genomes of Dehalococcoides ethenogenes strain 195 and Dehalococcoides sp. strain BAV1; however, sequence identity did not exceed 94.4 and 93.1%, respectively. The presence of RDH genes in strains CBDB1, FL2, and BAV1 that have no orthologs in strain 195 suggests that these strains possess dechlorination activities not present in strain 195. Comparative sequence analysis identified consensus sequences for cobalamin binding in deduced amino acid sequences of seven RDH genes. In conclusion, this study demonstrates that the presence of multiple nonidentical RDH genes is characteristic of Dehalococcoides strains.


Applied and Environmental Microbiology | 2007

Identification of a Chlorobenzene Reductive Dehalogenase in Dehalococcoides sp. Strain CBDB1

Lorenz Adrian; Jan Rahnenführer; Johan Gobom; Tina Hölscher

ABSTRACT A chlorobenzene reductive dehalogenase of the anaerobic dehalorespiring bacterium Dehalococcoides sp. strain CBDB1 was identified. Due to poor biomass yields, standard protein isolation procedures were not applicable. Therefore, cell extracts from cultures grown on trichlorobenzenes were separated by native polyacrylamide gel electrophoresis and analyzed directly for chlorobenzene reductive dehalogenase activity within gel fragments. Activity was found in a single band, even though electrophoretic separation was performed under aerobic conditions. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) and nano-liquid chromatography-MALDI MS analysis of silver-stained replicas of the active band on native polyacrylamide gels identified a protein product of the cbdbA84 gene, now called cbrA. The cbdbA84 gene is one of 32 reductive dehalogenase homologous genes present in the genome of strain CBDB1. The chlorobenzene reductive dehalogenase identified in our study represents a member of the family of corrinoid/iron-sulfur cluster-containing reductive dehalogenases. No orthologs of cbdbA84 were found in the completely sequenced genomes of Dehalococcoides sp. strains 195 and BAV1 nor among the genes amplified from Dehalococcoides sp. strain FL2 or mixed cultures containing Dehalococcoides. Another dehalogenase homologue (cbdbA80) was expressed in cultures that contained 1,2,4-trichlorobenzene, but its role is unclear. Other highly expressed proteins identified with our approach included the major subunit of a protein annotated as formate dehydrogenase, transporter subunits, and a putative S-layer protein.


Bioresource Technology | 2011

Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products.

Ailette Prieto; Monika Möder; Rosario Rodil; Lorenz Adrian; Ernest Marco-Urrea

More than 90% of the antibiotics ciprofloxacin (CIPRO) and norfloxacin (NOR) at 2 mg L(-1) were degraded by Trametes versicolor after 7 days of incubation in malt extract liquid medium. In in vitro assays with purified laccase (16.7 nkat mL(-1)), an extracellular enzyme excreted constitutively by this fungus, 16% of CIPRO was removed after 20 h. The addition of the laccase mediator 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt led to 97.7% and 33.7% degradation of CIPRO and NOR, respectively. Inhibition of CIPRO and NOR degradation by the cytochrome P450 inhibitor 1-aminobenzotriazole suggests that the P450 system also plays a role in the degradation of the two antibiotics. Transformation products of CIPRO and NOR were monitored at different incubation times by triple-quadrupole and quadrupole time-of-flight mass spectrometry, and can be assigned to three different reaction pathways: (i) oxidation of the piperazinyl substituent, (ii) monohydroxylation, and (iii) formation of dimeric products.


Applied and Environmental Microbiology | 2009

Dehalococcoides sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260.

Lorenz Adrian; Vlasta Dudková; Katařina Demnerová; Donna L. Bedard

ABSTRACT “Dehalococcoides” sp. strain CBDB1 in pure culture dechlorinates a wide range of PCB congeners with three to eight chlorine substituents. Congener-specific high-resolution gas chromatography revealed that CBDB1 extensively dechlorinated both Aroclor 1248 and Aroclor 1260 after four months of incubation. For example, 16 congeners comprising 67.3% of the total PCBs in Aroclor 1260 were decreased by 64%. We confirmed the dechlorination of 43 different PCB congeners. The most prominent dechlorination products were 2,3′,5-chlorinated biphenyl (25-3-CB) and 24-3-CB from Aroclor 1248 and 235-25-CB, 25-25-CB, 24-25-CB, and 235-236-CB from Aroclor 1260. Strain CBDB1 removed flanked para chlorines from 3,4-, 2,4,5-, and 3,4,5-chlorophenyl rings, primarily para chlorines from 2,3,4,5-chlorophenyl rings, primarily meta chlorines from 2,3,4- and 2,3,4,6-chlorophenyl rings, and either meta or para chlorines from 2,3,4,5,6-chlorophenyl rings. The site of attack on the 2,3,4-chorophenyl ring was heavily influenced by the chlorine configuration on the opposite ring. This dechlorination pattern matches PCB Process H dechlorination, which was previously observed in situ both in the Acushnet Estuary (New Bedford, MA) and in parts of the Hudson River (New York). Accordingly, we propose that Dehalococcoides bacteria similar to CBDB1 are potential agents of Process H PCB dechlorination in the environment. This is the first time that a complex naturally occurring PCB dechlorination pattern has been reproduced in the laboratory using a single bacterial strain.


Applied and Environmental Microbiology | 2007

Expression of Reductive Dehalogenase Genes in Dehalococcoides ethenogenes Strain 195 Growing on Tetrachloroethene, Trichloroethene, or 2,3-Dichlorophenol

Jennifer M. Fung; Robert M. Morris; Lorenz Adrian; Stephen H. Zinder

ABSTRACT Reductive dehalogenase (RD) gene transcript levels in Dehalococcoides ethenogenes strain 195 were investigated using reverse transcriptase quantitative PCR during growth and reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), or 2,3-dichlorophenol (2,3-DCP). Cells grown with PCE or TCE had high transcript levels (greater than that for rpoB) for tceA, which encodes the TCE RD, pceA, which encodes the PCE RD, and DET0162, which contains a predicted stop codon and is considered nonfunctional. In cells grown with 2,3-DCP, tceA mRNA was less than 1% of that for rpoB, indicating that its transcription was regulated. pceA and DET0162 were the only RD genes with high transcript levels in cells grown with 2,3-DCP. Proteomic analysis of PCE-grown cells detected both PceA and TceA with high peptide coverage but not DET0162, and analysis of 2,3-DCP-grown cells detected PceA with high coverage but not TceA, DET0162, or any other potential RD. Cells grown with PCE or 2,3-DCP were tested for the ability to dechlorinate PCE, TCE, or 2,3-DCP with H2 as the electron donor. 2,3-DCP-grown cells were unable to dechlorinate TCE but dechlorinated PCE to TCE without a lag, and PCE-grown cells dechlorinated 2,3-DCP without a lag. These results show that 2,3-DCP-grown cells do not produce TceA and that DET0162 is transcribed but its translation product is not detectable in cells and are consistent with PceAs being bifunctional, also serving as the 2,3-DCP RD. Chlorophenols naturally occur in soils and are good candidates for the original substrates for PceA.

Collaboration


Dive into the Lorenz Adrian's collaboration.

Top Co-Authors

Avatar

Helmut Görisch

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Martin von Bergen

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Ernest Marco-Urrea

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jana Seifert

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar

Nico Jehmlich

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Kublik

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Myriel Cooper

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge