Lorenza Bordoli
University of Basel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorenza Bordoli.
Bioinformatics | 2006
Konstantin Arnold; Lorenza Bordoli; Jürgen Kopp; Torsten Schwede
MOTIVATION Homology models of proteins are of great interest for planning and analysing biological experiments when no experimental three-dimensional structures are available. Building homology models requires specialized programs and up-to-date sequence and structural databases. Integrating all required tools, programs and databases into a single web-based workspace facilitates access to homology modelling from a computer with web connection without the need of downloading and installing large program packages and databases. RESULTS SWISS-MODEL workspace is a web-based integrated service dedicated to protein structure homology modelling. It assists and guides the user in building protein homology models at different levels of complexity. A personal working environment is provided for each user where several modelling projects can be carried out in parallel. Protein sequence and structure databases necessary for modelling are accessible from the workspace and are updated in regular intervals. Tools for template selection, model building and structure quality evaluation can be invoked from within the workspace. Workflow and usage of the workspace are illustrated by modelling human Cyclin A1 and human Transmembrane Protease 3. AVAILABILITY The SWISS-MODEL workspace can be accessed freely at http://swissmodel.expasy.org/workspace/
Nucleic Acids Research | 2014
Marco Biasini; Stefan Bienert; Andrew Waterhouse; Konstantin Arnold; Gabriel Studer; Tobias Schmidt; Florian Kiefer; Tiziano Gallo Cassarino; Martino Bertoni; Lorenza Bordoli; Torsten Schwede
Protein structure homology modelling has become a routine technique to generate 3D models for proteins when experimental structures are not available. Fully automated servers such as SWISS-MODEL with user-friendly web interfaces generate reliable models without the need for complex software packages or downloading large databases. Here, we describe the latest version of the SWISS-MODEL expert system for protein structure modelling. The SWISS-MODEL template library provides annotation of quaternary structure and essential ligands and co-factors to allow for building of complete structural models, including their oligomeric structure. The improved SWISS-MODEL pipeline makes extensive use of model quality estimation for selection of the most suitable templates and provides estimates of the expected accuracy of the resulting models. The accuracy of the models generated by SWISS-MODEL is continuously evaluated by the CAMEO system. The new web site allows users to interactively search for templates, cluster them by sequence similarity, structurally compare alternative templates and select the ones to be used for model building. In cases where multiple alternative template structures are available for a protein of interest, a user-guided template selection step allows building models in different functional states. SWISS-MODEL is available at http://swissmodel.expasy.org/.
Nucleic Acids Research | 2009
Florian Kiefer; Konstantin Arnold; Michael Künzli; Lorenza Bordoli; Torsten Schwede
SWISS-MODEL Repository (http://swissmodel.expasy.org/repository/) is a database of 3D protein structure models generated by the SWISS-MODEL homology-modelling pipeline. The aim of the SWISS-MODEL Repository is to provide access to an up-to-date collection of annotated 3D protein models generated by automated homology modelling for all sequences in Swiss-Prot and for relevant models organisms. Regular updates ensure that target coverage is complete, that models are built using the most recent sequence and template structure databases, and that improvements in the underlying modelling pipeline are fully utilised. As of September 2008, the database contains 3.4 million entries for 2.7 million different protein sequences from the UniProt database. SWISS-MODEL Repository allows the users to assess the quality of the models in the database, search for alternative template structures, and to build models interactively via SWISS-MODEL Workspace (http://swissmodel.expasy.org/workspace/). Annotation of models with functional information and cross-linking with other databases such as the Protein Model Portal (http://www.proteinmodelportal.org) of the PSI Structural Genomics Knowledge Base facilitates the navigation between protein sequence and structure resources.
Nature Protocols | 2009
Lorenza Bordoli; Florian Kiefer; Konstantin Arnold; Pascal Benkert; James Battey; Torsten Schwede
Homology modeling aims to build three-dimensional protein structure models using experimentally determined structures of related family members as templates. SWISS-MODEL workspace is an integrated Web-based modeling expert system. For a given target protein, a library of experimental protein structures is searched to identify suitable templates. On the basis of a sequence alignment between the target protein and the template structure, a three-dimensional model for the target protein is generated. Model quality assessment tools are used to estimate the reliability of the resulting models. Homology modeling is currently the most accurate computational method to generate reliable structural models and is routinely used in many biological applications. Typically, the computational effort for a modeling project is less than 2 h. However, this does not include the time required for visualization and interpretation of the model, which may vary depending on personal experience working with protein structures.
Proteins | 2007
Jürgen Kopp; Lorenza Bordoli; James N. D. Battey; Florian Kiefer; Torsten Schwede
This manuscript presents the assessment of the template‐based modeling category of the seventh Critical Assessment of Techniques for Protein Structure Prediction (CASP7). The accuracy of predicted protein models for 108 target domains was assessed based on a detailed comparison between the experimental and predicted structures. The assessment was performed using numerical measures for backbone and structural alignment accuracy, and by scoring correctly modeled hydrogen bond interactions in the predictions. Based on these criteria, our statistical analysis identified a number of groups whose predictions were on average significantly more accurate. Furthermore, the predictions for six target proteins were evaluated for the accuracy of their modeled cofactor binding sites. We also assessed the ability of predictors to improve over the best available single template structure, which showed that the best groups produced models closer to the target structure than the best single template for a significant number of targets. In addition, we assessed the accuracy of the error estimates (local confidence values) assigned to predictions on a per residue basis. Finally, we discuss some general conclusions about the state of the art of template‐based modeling methods and their usefulness for practical applications. Proteins 2007.
Database | 2013
Juergen Haas; Steven Roth; Konstantin Arnold; Florian Kiefer; Tobias Schmidt; Lorenza Bordoli; Torsten Schwede
The Protein Model Portal (PMP) has been developed to foster effective use of 3D molecular models in biomedical research by providing convenient and comprehensive access to structural information for proteins. Both experimental structures and theoretical models for a given protein can be searched simultaneously and analyzed for structural variability. By providing a comprehensive view on structural information, PMP offers the opportunity to apply consistent assessment and validation criteria to the complete set of structural models available for proteins. PMP is an open project so that new methods developed by the community can contribute to PMP, for example, new modeling servers for creating homology models and model quality estimation servers for model validation. The accuracy of participating modeling servers is continuously evaluated by the Continuous Automated Model EvaluatiOn (CAMEO) project. The PMP offers a unique interface to visualize structural coverage of a protein combining both theoretical models and experimental structures, allowing straightforward assessment of the model quality and hence their utility. The portal is updated regularly and actively developed to include latest methods in the field of computational structural biology. Database URL: http://www.proteinmodelportal.org
Proteins | 2007
James N. D. Battey; Jürgen Kopp; Lorenza Bordoli; Randy J. Read; Neil D. Clarke; Torsten Schwede
With each round of CASP (Critical Assessment of Techniques for Protein Structure Prediction), automated prediction servers have played an increasingly important role. Today, most protein structure prediction approaches in some way depend on automated methods for fold recognition or model building. The accuracy of server predictions has significantly increased over the last years, and, in CASP7, we observed a continuation of this trend. In the template‐based modeling category, the best prediction server was ranked third overall, i.e. it outperformed all but two of the human participating groups. This server also ranked among the very best predictors in the free modeling category as well, being clearly beaten by only one human group. In the high accuracy (HA) subset of TBM, two of the top five groups were servers. This article summarizes the contribution of automated structure prediction servers in the CASP7 experiment, with emphasis on 3D structure prediction, as well as information on their prediction scope and public availability. Proteins 2007.
Proteins | 2007
Lorenza Bordoli; Florian Kiefer; Torsten Schwede
Intrinsically unstructured regions in proteins have been associated with numerous important biological cellular functions. As measuring native disorder experimentally is technically challenging, computational methods for prediction of disordered regions in a protein have gained much interest in recent years. As part of the seventh Critical Assessment of Techniques for Protein Structure Prediction (CASP7), we have assessed 19 methods for disorder prediction based on their results for 96 target proteins. Prediction accuracy was assessed using detailed numerical comparison between the predicted disorder and the experimental structures. On average, methods participating in CASP7 have improved accuracy in comparison to the previous assessment in CASP6. Overall, however, no improvement over the best methods in CASP6 was observed in CASP7. Significant differences between different prediction methods were identified with regard to their sensitivity and specificity in correctly predicting ordered and disordered residues based on a protein target sequence, which is of relevance for practical applications of these computational tools. Proteins 2007.
Methods of Molecular Biology | 2011
Lorenza Bordoli; Torsten Schwede
Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of applications. Since the usefulness of a model for specific application is determined by its accuracy, model quality estimation is an essential component of protein structure prediction. Comparative protein modeling has become a routine approach in many areas of life science research since fully automated modeling systems allow also nonexperts to build reliable models. In this chapter, we describe practical approaches for automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.
Nucleic Acids Research | 2009
Helen M. Berman; John D. Westbrook; Margaret Gabanyi; Wendy Tao; Raship Shah; Andrei Kouranov; Torsten Schwede; Konstantin Arnold; Florian Kiefer; Lorenza Bordoli; Jürgen Kopp; Michael Podvinec; Paul D. Adams; Lester Carter; Wladek Minor; Rajesh Nair; Joshua La Baer
The Protein Structure Initiative Structural Genomics Knowledgebase (PSI SGKB, http://kb.psi-structuralgenomics.org) has been created to turn the products of the PSI structural genomics effort into knowledge that can be used by the biological research community to understand living systems and disease. This resource provides central access to structures in the Protein Data Bank (PDB), along with functional annotations, associated homology models, worldwide protein target tracking information, available protocols and the potential to obtain DNA materials for many of the targets. It also offers the ability to search all of the structural and methodological publications and the innovative technologies that were catalyzed by the PSIs high-throughput research efforts. In collaboration with the Nature Publishing Group, the PSI SGKB provides a research library, editorials about new research advances, news and an events calendar to present a broader view of structural biology and structural genomics. By making these resources freely available, the PSI SGKB serves as a bridge to connect the structural biology and the greater biomedical communities.