Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorenza Brocca is active.

Publication


Featured researches published by Lorenza Brocca.


The Journal of Physiology | 2006

Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders

Giuseppe D'Antona; Francesca Lanfranconi; Lorenza Brocca; Raffaella Adami; Rosetta Rossi; Giorgio Moro; Monica Canepari; Roberto Bottinelli

Needle biopsy samples were taken from vastus lateralis muscle (VL) of five male body builders (BB, age 27.4 ± 0.93 years; mean ±s.e.m.), who had being performing hypertrophic heavy resistance exercise (HHRE) for at least 2 years, and from five male active, but untrained control subjects (CTRL, age 29.9 ± 2.01 years). The following determinations were performed: anatomical cross‐sectional area and volume of the quadriceps and VL muscles in vivo by magnetic resonance imaging (MRI); myosin heavy chain isoform (MHC) distribution of the whole biopsy samples by SDS‐PAGE; cross‐sectional area (CSA), force (Po), specific force (Po/CSA) and maximum shortening velocity (Vo) of a large population (n= 524) of single skinned muscle fibres classified on the basis of MHC isoform composition by SDS‐PAGE; actin sliding velocity (Vf) on pure myosin isoforms by in vitro motility assays. In BB a preferential hypertrophy of fast and especially type 2X fibres was observed. The very large hypertrophy of VL in vivo could not be fully accounted for by single muscle fibre hypertrophy. CSA of VL in vivo was, in fact, 54% larger in BB than in CTRL, whereas mean fibre area was only 14% larger in BB than in CTRL. MHC isoform distribution was shifted towards 2X fibres in BB. Po/CSA was significantly lower in type 1 fibres from BB than in type 1 fibres from CTRL whereas both type 2A and type 2X fibres were significantly stronger in BB than in CTRL. Vo of type 1 fibres and Vf of myosin 1 were significantly lower in BB than in CTRL, whereas no difference was observed among fast fibres and myosin 2A. The findings indicate that skeletal muscle of BB was markedly adapted to HHRE through extreme hypertrophy, a shift towards the stronger and more powerful fibre types and an increase in specific force of muscle fibres. Such adaptations could not be fully accounted for by well known mechanisms of muscle plasticity, i.e. by the hypertrophy of single muscle fibre (quantitative mechanism) and by a regulation of contractile properties of muscle fibres based on MHC isoform content (qualitative mechanism). Two BB subjects took anabolic steroids and three BB subjects did not. The former BB differed from the latter BB mostly for the size of their muscles and muscle fibres.


The Journal of Physiology | 2012

The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms

Lorenza Brocca; Jessica Cannavino; Luisa Coletto; Gianni Biolo; Marco Sandri; Roberto Bottinelli

•  It is still debated whether an imbalance between production and removal of reactive oxygen species is a major trigger of disuse skeletal muscle atrophy in human limb muscles and what the underlying mechanisms are. •  In the bed rest model of human disuse, redox imbalance, impairment of antioxidant defence systems and metabolic derangement occurred early, before vastus lateralis muscle atrophy developed, and persisted through 35 days of bed rest. •  Down‐regulation of PGC‐1α, a master controller of muscle metabolism, and up‐regulation of SREBP‐1, a master controller of lipid synthesis, are likely to have triggered disuse adaptations through mitochondrial dysfunction, whereas AMP kinase, an energy sensor pathway, was unaltered. •  The present and previous results on the same subjects suggest a causal link between muscle atrophy, impaired skeletal muscle metabolism, impaired whole body oxidative metabolism, and insulin sensitivity and moderate inflammation, which are major risk factors of physical inactivity related diseases.


The Journal of Physiology | 2014

PGC1‐α over‐expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice

Jessica Cannavino; Lorenza Brocca; Marco Sandri; Roberto Bottinelli

Oxidative stress is widely considered a major cause of muscle loss not only in disuse but also in most chronic diseases, triggering carbonylation of proteins and activation of catabolic pathways involved in their degradation. Here we show that administration of an antioxidant prevents redox imbalance, but does not prevent activation of catabolic pathways and muscle atrophy. We indicate that alterations of oxidative metabolism, occurring in slow soleus muscle, are not just a consequence of disuse, but a major cause of activation of catabolic pathways and loss of mass. This conclusion is confirmed by the observation that muscle‐specific overexpression of PGC‐1α, a master regulator of mitochondrial biogenesis, prevents activation of catabolic systems and disuse muscle atrophy. These findings contribute to a better mechanistic understanding of disuse muscle loss.


The Journal of Physiology | 2011

Redox homeostasis, oxidative stress and disuse muscle atrophy

Jean François Desaphy; Lorenza Brocca; Sabata Pierno; Diana Conte Camerino; Roberto Bottinelli

Abstract  A pivotal role has been ascribed to oxidative stress in determining the imbalance between protein synthesis and degradation leading to muscle atrophy in many pathological conditions and in disuse. However, a large variability in disuse‐induced alteration of redox homeostasis through muscles, models and species emerges from the literature. Whereas the causal role of oxidative stress appears well established in the mechanical ventilation model, findings are less compelling in the hindlimb unloaded mice and very limited in humans. The mere coexistence of muscle atrophy, indirect indexes of increased reactive oxygen species (ROS) production and impairment of antioxidant defence systems, in fact, does not unequivocally support a causal role of oxidative stress in the phenomenon. We hypothesise that in some muscles, models and species only, due to a large redox imbalance, the leading phenomena are activation of proteolysis and massive oxidation of proteins, which would become more susceptible to degradation. In other conditions, due to a lower extent and variable time course of ROS production, different ROS‐dependent, but also ‐independent intracellular pathways might dominate determining the variable extent of atrophy and even dispensable protein oxidation. The ROS production and removal are complex and finely tuned phenomena. They are indeed important intracellular signals and redox balance maintains normal muscle homeostasis and can underlie either positive or negative adaptations to exercise. A precise approach to determine the levels of ROS in living cells in various conditions appears to be of paramount importance to define and support such hypotheses.


The Journal of Physiology | 2015

The role of alterations in mitochondrial dynamics and PGC‐1α over‐expression in fast muscle atrophy following hindlimb unloading

Jessica Cannavino; Lorenza Brocca; Marco Sandri; Bruno Grassi; Roberto Bottinelli

Skeletal muscle atrophy occurs as a result of disuse. Although several studies have established that a decrease in protein synthesis and increase in protein degradation lead to muscle atrophy, little is known about the triggers underlying such processes. A growing body of evidence challenges oxidative stress as a trigger of disuse atrophy; furthermore, it is also becoming evident that mitochondrial dysfunction may play a causative role in determining muscle atrophy. Mitochondrial fusion and fission have emerged as important processes that govern mitochondrial function and PGC‐1α may regulate fusion/fission events. Although most studies on mice have focused on the anti‐gravitary slow soleus muscle as it is preferentially affected by disuse atrophy, several fast muscles (including gastrocnemius) go through a significant loss of mass following unloading. Here we found that in fast muscles an early down‐regulation of pro‐fusion proteins, through concomitant AMP‐activated protein kinase (AMPK) activation, can activate catabolic systems, and ultimately cause muscle mass loss in disuse. Elevated muscle PGC‐1α completely preserves muscle mass by preventing the fall in pro‐fusion protein expression, AMPK and catabolic system activation, suggesting that compounds inducing PGC‐1α expression could be useful to treat and prevent muscle atrophy.


Pharmacological Research | 2010

Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles

Jean François Desaphy; Sabata Pierno; Antonella Liantonio; Viviana Giannuzzi; Claudio Digennaro; Maria Maddalena Dinardo; Giulia Maria Camerino; Patrizia Ricciuti; Lorenza Brocca; Roberto Bottinelli; Diana Conte Camerino

Oxidative stress was proposed as a trigger of muscle impairment in various muscle diseases. The hindlimb-unloaded (HU) rodent is a model of disuse inducing atrophy and slow-to-fast transition of postural muscles. Here, mice unloaded for 14 days were chronically treated with the selective antioxidant trolox. After HU, atrophy was more pronounced in the slow-twitch soleus muscle (Sol) than in the fast-twitch gastrocnemius and tibialis anterior muscles, and was absent in extensor digitorum longus muscle. In accord with the phenotype transition, HU Sol showed a reduced expression of myosin heavy chain type 2A (MHC-2A) and increase in MHC-2X and MHC-2B isoforms. In parallel, HU Sol displayed an increased sarcolemma chloride conductance related to an increased expression of ClC-1 channels, changes in excitability parameters, a positive shift of the mechanical threshold, and a decrease of the resting cytosolic calcium concentration. Moreover, the level of lipoperoxidation increased proportionally to the degree of atrophy of each muscle type. As expected, trolox treatment fully prevented oxidative stress in HU mice. Atrophy was not prevented but the drug significantly attenuated Sol phenotypic transition and excitability changes. Trolox treatment had no effect on control mice. These results suggest possible benefits of antioxidants in protecting muscle against disuse.


Experimental Physiology | 2010

Is oxidative stress a cause or consequence of disuse muscle atrophy in mice? A proteomic approach in hindlimb‐unloaded mice

Lorenza Brocca; Jean-François Desaphy; S Pierno; Diana Conte Camerino; Roberto Bottinelli

Two‐dimensional proteomic maps of soleus (Sol), a slow oxidative muscle, and gastrocnemius (Gas), a fast glycolytic muscle of control mice (CTRL), of mice hindlimb unloaded for 14 days (HU mice) and of HU mice treated with trolox (HU‐TRO), a selective and potent antioxidant, were compared. The proteomic analysis identified a large number of differentially expressed proteins in a pool of ∼800 proteins in both muscles. The protein pattern of Sol and Gas adapted very differently to hindlimb unloading. The most interesting adaptations related to the cellular defense systems against oxidative stress and energy metabolism. In HU Sol, the antioxidant defense systems and heat shock proteins were downregulated, and protein oxidation index and lipid peroxidation were higher compared with CTRL Sol. In contrast, in HU Gas the antioxidant defense systems were upregulated, and protein oxidation index and lipid peroxidation were normal. Notably, both Sol and Gas muscles and their muscle fibres were atrophic. Antioxidant administration prevented the impairment of the antioxidant defense systems in Sol and further enhanced them in Gas. Accordingly, it restored normal levels of protein oxidation and lipid peroxidation in Sol. However, muscle and muscle fibre atrophy was not prevented either in Sol or in Gas. A general downsizing of all energy production systems in Sol and a shift towards glycolytic metabolism in Gas were observed. Trolox administration did not prevent metabolic adaptations in either Sol or Gas. The present findings suggest that oxidative stress is not a major determinant of muscle atrophy in HU mice.


American Journal of Cardiology | 2008

Oral Amino Acid Supplementation Counteracts Age-Induced Sarcopenia in Elderly Rats

Orietta Pansarasa; Vincenzo Flati; Giovanni Corsetti; Lorenza Brocca; Evasio Pasini; Giuseppe D'Antona

We investigated the effects of a specific mixture of amino acid (AA) supplements on the adaptation changes induced by aging in the soleus muscle of rats. Male Wistar rats were divided into 3 groups (n = 5 each): young control (YO), 3 months of age; elderly control (EL), 18 months of age; and elderly orally supplemented with an AA mixture (EL-AA), 18 months of age, given as 0.1 g/kg per day in drinking water for 8 weeks. Myosin heavy chain (MHC) composition was analyzed in all muscles. The total fiber number and fiber cross-sectional area of types 1 and 2A fibers were also measured in immunostained sections of the soleus muscle. The ratios between the sarcomere volume (Vsar) and the total volume (Vtot) and single muscle fibers were studied by electron microscopy. The expression of total and phosphorylated serine/threonine protein kinase mammalian target of rapamycin (mTOR), a potent regulator of messenger RNA translation initiation, was also determined in all groups. Aging was associated with an overall shift toward the expression of a slower MHC phenotype, atrophy of fast and slow fibers, a significant decrease in Vtot/Vsar, and no changes in total fiber number. AA supplementation antagonized the effects of aging. A shift toward the expression of faster MHC isoforms was observed. Fiber atrophy appeared to be partly counteracted by the AA supplements; we noted an increase in cross-sectional area fibers and Vtot/Vsar in EL-AAs. Total and phosphorylated mTOR expression appeared to decrease in EL and was restored by the AA supplements. Collectively, these results suggest that aging-induced muscle adaptations can be partly restored by AA supplementation. An mTOR signal pathway may mediate the effects on fiber trophism.


The Journal of Physiology | 2007

Structural and functional alterations of muscle fibres in the novel mouse model of facioscapulohumeral muscular dystrophy

Giuseppe D'Antona; Lorenza Brocca; Orietta Pansarasa; Chiara Rinaldi; Rossella Tupler; Roberto Bottinelli

We recently generated a mouse model of facioscapulohumeral muscular dystrophy (FSHD) by selectively overexpressing FRG1, a candidate gene for FSHD, in skeletal muscle. The muscles of the FRG‐1 mice did not show any plasmamembrane defect suggesting a novel pathogenetic mechanism for FSHD. Here, we study structure and function of muscle fibres from three lines of mice overexpressing FRG1 at different levels: FRG1‐low, FRG1‐med, FRG1‐high. Cross‐sectional area (CSA), specific force (Po/CSA) and maximum shortening velocity (Vo) of identified types of muscle fibres from FRG1‐low and FRG1‐med mice were analysed and found to be lower than in WT mice. Fast fibres and especially type 2B fibres (the fastest type) were preferentially involved in the dystrophic process showing a much larger force deficit than type 1 (slow) fibres. Consistent with the latter observation, the MHC isoform distribution of several muscles of the three FRG1 lines showed a shift towards slower MHC isoforms in comparison to WT muscle. Moreover, fast muscles showed a more evident histological deterioration, a larger atrophy and a higher percentage of centrally nucleated fibres than the soleus, the slowest muscle in mice. Interestingly, loss in CSA, Po/CSA and Vo of single muscle fibres and MHC isoform shift towards a slower phenotype can be considered early signs of muscular dystrophy (MD). They were, in fact, found also in FRG1‐low mice which did not show any impairment of function in vivo and of muscle size in vitro and in soleus muscles, which had a completely preserved morphology. This study provides a detailed characterization of structure and function of muscle fibres in a novel murine model of one of the main human MDs and suggests that fundamental features of the dystrophic process, common to most MDs, such as the intrinsic loss of contractile strength of muscle fibres, the preferential involvement of fast fibres and the shift towards a slow muscle phenotype can occur independently from obvious alterations of the plasma membrane.


Biochemical Pharmacology | 2011

Statin or fibrate chronic treatment modifies the proteomic profile of rat skeletal muscle.

Giulia Maria Camerino; Lorenza Brocca; Claudio Digennaro; Diana Conte Camerino; Sabata Pierno; Roberto Bottinelli

Statins and fibrates can cause myopathy. To further understand the causes of the damage we performed a proteome analysis in fast-twitch skeletal muscle of rats chronically treated with different hypolipidemic drugs. The proteomic maps were obtained from extensor digitorum longus (EDL) muscles of rats treated for 2-months with 10mg/kg atorvastatin, 20 mg/kg fluvastatin, 60 mg/kg fenofibrate and control rats. The proteins differentially expressed were identified by mass spectrometry and further analyzed by immunoblot analysis. We found a significant modification in 40 out of 417 total spots analyzed in atorvastatin treated rats, 15 out of 436 total spots in fluvastatin treated rats and 21 out of 439 total spots in fenofibrate treated rats in comparison to controls. All treatments induced a general tendency to a down-regulation of protein expression; in particular, atorvastatin affected the protein pattern more extensively with respect to the other treatments. Energy production systems, both oxidative and glycolytic enzymes and creatine kinase, were down-regulated following atorvastatin administration, whereas fenofibrate determined mostly alterations in glycolytic enzymes and creatine kinase, oxidative enzymes being relatively spared. Additionally, all treatments resulted in some modifications of proteins involved in cellular defenses against oxidative stress, such as heat shock proteins, and of myofibrillar proteins. These results were confirmed by immunoblot analysis. In conclusions, the proteomic analysis showed that either statin or fibrate administration can modify the expression of proteins essential for skeletal muscle function suggesting potential mechanisms for statin myopathy.

Collaboration


Dive into the Lorenza Brocca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge