Lorenza Ciani
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorenza Ciani.
Nature Reviews Neuroscience | 2005
Lorenza Ciani; Patricia C. Salinas
WNT signalling has a key role in early embryonic patterning through the regulation of cell fate decisions, tissue polarity and cell movements. In the nervous system, WNT signalling also regulates neuronal connectivity by controlling axon pathfinding, axon remodelling, dendrite morphogenesis and synapse formation. Studies, from invertebrates to mammals, have led to a considerable understanding of WNT signal transduction pathways. This knowledge provides a framework for the study of the mechanisms by which WNTs regulate diverse neuronal functions. Manipulation of the WNT pathways could provide new strategies for nerve regeneration and neuronal circuit modulation.
Journal of Cell Biology | 2006
Azlina Ahmad-Annuar; Lorenza Ciani; Iordanis Simeonidis; Judit Herreros; Naila Ben Fredj; Silvana B. Rosso; Anita C. Hall; Stephen G. Brickley; Patricia C. Salinas
Proper dialogue between presynaptic neurons and their targets is essential for correct synaptic assembly and function. At central synapses, Wnt proteins function as retrograde signals to regulate axon remodeling and the accumulation of presynaptic proteins. Loss of Wnt7a function leads to defects in the localization of presynaptic markers and in the morphology of the presynaptic axons. We show that loss of function of Dishevelled-1 (Dvl1) mimics and enhances the Wnt7a phenotype in the cerebellum. Although active zones appear normal, electrophysiological recordings in cerebellar slices from Wnt7a/Dvl1 double mutant mice reveal a defect in neurotransmitter release at mossy fiber–granule cell synapses. Deficiency in Dvl1 decreases, whereas exposure to Wnt increases, synaptic vesicle recycling in mossy fibers. Dvl increases the number of Bassoon clusters, and like other components of the Wnt pathway, it localizes to synaptic sites. These findings demonstrate that Wnts signal across the synapse on Dvl-expressing presynaptic terminals to regulate synaptic assembly and suggest a potential novel function for Wnts in neurotransmitter release.
Journal of Cell Biology | 2004
Lorenza Ciani; Olga Krylova; Matthew John Smalley; Trevor Clive Dale; Patricia C. Salinas
Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability.
The Journal of Neuroscience | 2008
Silvia A. Purro; Lorenza Ciani; Monica Hoyos-Flight; Eleanna Stamatakou; Eliza Siomou; Patricia C. Salinas
Axon guidance and target-derived signals control axonal behavior by regulating the cytoskeleton through poorly defined mechanisms. In particular, how these signaling molecules regulate the growth and directionality of microtubules is not well understood. Here we examine the effect of Wnts on growth cone remodeling, a process that precedes synapse formation. Time-lapse recordings reveal that Wnt3a rapidly inhibits growth cone translocation while inducing growth cone enlargement. These changes in axonal behavior are associated with changes in the organization of microtubules. Time-lapse imaging of EB3-GFP (green fluorescent protein)-labeled microtubule plus-ends demonstrates that Wnt3a regulates microtubule directionality, resulting in microtubule looping, growth cone pausing, and remodeling. Analyses of Dishevelled-1 (Dvl1) mutant neurons demonstrate that Dvl1 is required for Wnt-mediated microtubule reorganization and axon remodeling. Wnt signaling directly affects the microtubule cytoskeleton by unexpectedly inducing adenomatous polyposis coli (APC) loss from microtubule plus-ends. Consistently, short hairpin RNA knockdown of APC mimics Wnt3a function. Together, our findings define APC as a key Wnt signaling target in the regulation of microtubule growth direction.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Lorenza Ciani; Kieran Boyle; Ellen M. Dickins; Macarena Sahores; Derek Anane; Douglas M. Lopes; Alasdair J. Gibb; Patricia C. Salinas
The balance between excitatory and inhibitory synapses is crucial for normal brain function. Wnt proteins stimulate synapse formation by increasing synaptic assembly. However, it is unclear whether Wnt signaling differentially regulates the formation of excitatory and inhibitory synapses. Here, we demonstrate that Wnt7a preferentially stimulates excitatory synapse formation and function. In hippocampal neurons, Wnt7a increases the number of excitatory synapses, whereas inhibitory synapses are unaffected. Wnt7a or postsynaptic expression of Dishevelled-1 (Dvl1), a core Wnt signaling component, increases the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), but not miniature inhibitory postsynaptic currents (mIPSCs). Wnt7a increases the density and maturity of dendritic spines, whereas Wnt7a-Dvl1–deficient mice exhibit defects in spine morphogenesis and mossy fiber-CA3 synaptic transmission in the hippocampus. Using a postsynaptic reporter for Ca2+/Calmodulin-dependent protein kinase II (CaMKII) activity, we demonstrate that Wnt7a rapidly activates CaMKII in spines. Importantly, CaMKII inhibition abolishes the effects of Wnt7a on spine growth and excitatory synaptic strength. These data indicate that Wnt7a signaling is critical to regulate spine growth and synaptic strength through the local activation of CaMKII at dendritic spines. Therefore, aberrant Wnt7a signaling may contribute to neurological disorders in which excitatory signaling is disrupted.
BMC Cell Biology | 2007
Lorenza Ciani; Patricia C. Salinas
BackgroundWnt factors are a large family of signaling molecules that play important roles in the regulation of cell fate specification, tissue polarity and cell movement. In the nervous system, Wnts also regulates the formation of neuronal connection acting as retrograde signals that regulate the remodeling of the axons prior to the assembly of the presynaptic apparatus. The scaffold protein Dishevelled (Dvl) mimics the effect of Wnt on the neuronal cytoskeleton by increasing the number of stable microtubule along the axon shaft and inducing the formation of looped microtubules (MT) at enlarged growth cones. A divergent Wnt-Dvl canonical pathway which bifurcates downstream of Gsk3β regulates MT dynamics.ResultsHere we show that the Wnt pathway also activates c-Jun N-terminal kinase (JNK) to regulate MT stabilization. Although in the Wnt planar cell polarity (PCP) pathway, JNK lays downstream of Rho GTPases, these GTPases are not required for Wnt-mediated MTs stability. Epistatic analyses and pharmacological studies suggest that the Wnt-Dvl signalling regulates the dynamic of the cytoskeleton through two different pathways that lead to inhibition of Gsk3β and activation of JNK in the same cell.ConclusionWe demonstrate a novel role for JNK in Wnt-mediated MT stability. Wnt-Dvl pathway increases MT stability through a transcription independent mechanism that requires the concomitant inhibition of Gsk3β and activation of JNK. These studies demonstrate that Wnts can simultaneously activate different signalling pathways to modulate cytoskeleton dynamics.
Nature Reviews Neuroscience | 2005
Lorenza Ciani; Patricia C. Salinas
WNT signalling has a key role in early embryonic patterning through the regulation of cell fate decisions, tissue polarity and cell movements. In the nervous system, WNT signalling also regulates neuronal connectivity by controlling axon pathfinding, axon remodelling, dendrite morphogenesis and synapse formation. Studies, from invertebrates to mammals, have led to a considerable understanding of WNT signal transduction pathways. This knowledge provides a framework for the study of the mechanisms by which WNTs regulate diverse neuronal functions. Manipulation of the WNT pathways could provide new strategies for nerve regeneration and neuronal circuit modulation.
Current Biology | 2016
Aude Marzo; Soledad Galli; Douglas M. Lopes; Faye McLeod; Marina Podpolny; Margarita Segovia-Roldan; Lorenza Ciani; Silvia A. Purro; Francesca Cacucci; Alasdair J. Gibb; Patricia C. Salinas
Summary Synapse degeneration occurs early in neurodegenerative diseases and correlates strongly with cognitive decline in Alzheimer’s disease (AD). The molecular mechanisms that trigger synapse vulnerability and those that promote synapse regeneration after substantial synaptic failure remain poorly understood. Increasing evidence suggests a link between a deficiency in Wnt signaling and AD. The secreted Wnt antagonist Dickkopf-1 (Dkk1), which is elevated in AD, contributes to amyloid-β-mediated synaptic failure. However, the impact of Dkk1 at the circuit level and the mechanism by which synapses disassemble have not yet been explored. Using a transgenic mouse model that inducibly expresses Dkk1 in the hippocampus, we demonstrate that Dkk1 triggers synapse loss, impairs long-term potentiation, enhances long-term depression, and induces learning and memory deficits. We decipher the mechanism involved in synapse loss induced by Dkk1 as it can be prevented by combined inhibition of the Gsk3 and RhoA-Rock pathways. Notably, after loss of synaptic connectivity, reactivation of the Wnt pathway by cessation of Dkk1 expression completely restores synapse number, synaptic plasticity, and long-term memory. These findings demonstrate the remarkable capacity of adult neurons to regenerate functional circuits and highlight Wnt signaling as a targetable pathway for neuronal circuit recovery after synapse degeneration.
Neuron | 2008
Lorenza Ciani; Patricia C. Salinas
Electrical activity plays a crucial role in neuronal circuit assembly. Activation of NMDA receptors induces the elevation of intracellular calcium, resulting in the modulation of calcium-calmodulin-dependent protein kinases (CaMKs). The CaMK pathway regulates synaptogenesis by driving the formation of dendritic spines. However, the molecular effectors downstream of this pathway have remained poorly defined. In this issue of Neuron, Saneyoshi et al. identify a new signaling complex containing CaMKK/CaMKI/betaPIX/Rac that regulates the morphogenesis of spines in an activity-dependent manner.
Nature Communications | 2015
Lorenza Ciani; Aude Marzo; Kieran Boyle; Eleanna Stamatakou; Douglas M. Lopes; Derek Anane; Faye McLeod; Silvana B. Rosso; Alasdair J. Gibb; Patricia C. Salinas
The functional assembly of the synaptic release machinery is well understood; however, how signalling factors modulate this process remains unknown. Recent studies suggest that Wnts play a role in presynaptic function. To examine the mechanisms involved, we investigated the interaction of release machinery proteins with Dishevelled-1 (Dvl1), a scaffold protein that determines the cellular locale of Wnt action. Here we show that Dvl1 directly interacts with Synaptotagmin-1 (Syt-1) and indirectly with the SNARE proteins SNAP25 and Syntaxin (Stx-1). Importantly, the interaction of Dvl1 with Syt-1, which is regulated by Wnts, modulates neurotransmitter release. Moreover, presynaptic terminals from Wnt signalling-deficient mice exhibit reduced release probability and are unable to sustain high-frequency release. Consistently, the readily releasable pool size and formation of SNARE complexes are reduced. Our studies demonstrate that Wnt signalling tunes neurotransmitter release and identify Syt-1 as a target for modulation by secreted signalling proteins.