Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorenzo Botto is active.

Publication


Featured researches published by Lorenzo Botto.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Curvature-driven capillary migration and assembly of rod-like particles

Marcello Cavallaro; Lorenzo Botto; Eric P. Lewandowski; Marisa Wang; Kathleen J. Stebe

Capillarity can be used to direct anisotropic colloidal particles to precise locations and to orient them by using interface curvature as an applied field. We show this in experiments in which the shape of the interface is molded by pinning to vertical pillars of different cross-sections. These interfaces present well-defined curvature fields that orient and steer particles along complex trajectories. Trajectories and orientations are predicted by a theoretical model in which capillary forces and torques are related to Gaussian curvature gradients and angular deviations from principal directions of curvature. Interface curvature diverges near sharp boundaries, similar to an electric field near a pointed conductor. We exploit this feature to induce migration and assembly at preferred locations, and to create complex structures. We also report a repulsive interaction, in which microparticles move away from planar bounding walls along curvature gradient contours. These phenomena should be widely useful in the directed assembly of micro- and nanoparticles with potential application in the fabrication of materials with tunable mechanical or electronic properties, in emulsion production, and in encapsulation.


Soft Matter | 2012

Capillary interactions between anisotropic particles

Lorenzo Botto; Eric P. Lewandowski; Marcello Cavallaro; Kathleen J. Stebe

Micro and nanoparticle adsorption to and assembly by capillarity at fluid–fluid interfaces are intriguing aspects of soft matter science with broad potential in the directed assembly of anisotropic media. The importance of the field stems from the ubiquitous presence of multiphase systems, the malleability of fluid interfaces, and the ability to tune the interactions of the particles adsorbed on them. While homogeneous spherical particles at interfaces have been well studied, the behavior of anisotropic particles – whether the anisotropy originates from shape or chemical heterogeneity – has been considered only very recently. We review recent advances in the field of anisotropic particles at fluid interfaces, by focusing on particles in the micron and submicron range. We discuss capillary adsorption, orientation, migration, and self-assembly, on planar and curved interfaces, and the rheology of particle-laden interfaces. Prospects for future work and outstanding challenges are also discussed.


Physics of Fluids | 2003

Mechanisms of particle deposition in a fully developed turbulent open channel flow

Chidambaram Narayanan; Djamel Lakehal; Lorenzo Botto; Alfredo Soldati

Particle dispersion and deposition in the region near the wall of a turbulent open channel is studied using direct numerical simulation of the flow, combined with Lagrangian particle tracking under conditions of one-way coupling. Particles with response times of 5 and 15, normalized using the wall friction velocity and the fluid kinematic viscosity, are considered. The simulations were performed until the particle phase reached a statistically stationary state before calculating relevant statistics. For both response times, particles are seen to accumulate strongly very close to the wall in the form of streamwise oriented streaks. Deposited particles were divided into two distinct populations; those with large wall-normal deposition velocities and small near-wall residence times referred to as the free-flight population, and particles depositing with negligible wall-normal velocities and large near-wall residence times (more than 1000 wall time units), referred to as the diffusional deposition population....


Nature Chemistry | 2015

Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system

Karla E. Inostroza-Brito; Estelle Collin; Orit Siton-Mendelson; Katherine H. Smith; Amália Monge-Marcet; Daniela S. Ferreira; Raúl Pérez Rodríguez; Matilde Alonso; José Carlos Rodríguez-Cabello; Rui L. Reis; Francesc Sagués; Lorenzo Botto; Ronit Bitton; Helena S. Azevedo; Alvaro Mata

Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.


Journal of Fluid Mechanics | 2014

Drops on soft solids: free energy and double transition of contact angles

Luuk A. Lubbers; Joost H. Weijs; Lorenzo Botto; Siddhartha Das; Bruno Andreotti; Jacco H. Snoeijer

The equilibrium shape of liquid drops on elastic substrates is determined by minimizing elastic and capillary free energies, focusing on thick incompressible substrates. The problem is governed by three length scales: the size of the drop R, the molecular size a and the ratio of surface tension to elastic modulus γ/E. We show that the contact angles undergo two transitions upon changing the substrate from rigid to soft. The microscopic wetting angles deviate from Young’s law when γ/(Ea)≫1, while the apparent macroscopic angle only changes in the very soft limit γ/(ER)≫1. The elastic deformations are worked out for the simplifying case where the solid surface energy is assumed to be constant. The total free energy turns out to be lower on softer substrates, consistent with recent experiments.


Soft Matter | 2012

Capillary bond between rod-like particles and the micromechanics of particle-laden interfaces

Lorenzo Botto; Lu Yao; Robert L. Leheny; Kathleen J. Stebe

Rod-like microparticles assemble by capillarity at fluid interfaces to make distinctively different microstructures depending on the details of the particle shape. Ellipsoidal particles assemble in side-to-side orientations to form flexible chains, whereas cylinders assemble end-to-end to form rigid chains. To understand these differences, we simulate the near-field capillary interactions between pairs of rod-like particles subject to bond-stretching and bond-bending deformations. By comparing ellipsoids, cylinders, and cylinders with smooth edges, we show that geometric details dramatically affect the magnitude and shape of the capillary energy landscape. We relate this energy landscape to the mechanics of the chains, predicting the flexural rigidity for chains of ellipsoids, and a complex, non-elastic response for chains of cylinders. These results have implications in the design of particle laden interfaces for emulsion stabilization and encapsulation, and for oriented assembly of anisotropic materials.


Soft Matter | 2013

Near field capillary repulsion

Lu Yao; Lorenzo Botto; Marcello Cavallaro; Blake J. Bleier; Valeria Garbin; Kathleen J. Stebe

Anisotropic microparticles adsorbed at fluid–fluid interfaces create interface deformations and interact because of capillarity. Thus far, much of the work related to this phenomenon has focused on capillary attraction, which is ubiquitous in the far field for microparticles at interfaces. In this paper, we explore capillary repulsion. We study particles at interfaces with contact line undulations having wavelength significantly smaller than the characteristic particle size. By a combination of simulation and experiment, we show that identical microparticles with features in phase attract each other, and microparticles with different wavelengths, under certain conditions, repel each other in the near field, leading to a measurable equilibrium separation. We study these assemblies at air–water and oil–water interfaces. The capillary bond between particles at air–water interfaces is rigid, whereas at oil–water interfaces, the bond between particles with near field repulsion is elastic under perturbation. These results have implications for the capillary assembly of rough microparticles at interfaces, and for the tailoring of mechanics of particle monolayers.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Liquid drops attract or repel by the inverted Cheerios effect

Stefan Karpitschka; Anupam Pandey; Luuk A. Lubbers; Joost H. Weijs; Lorenzo Botto; Siddhartha Das; Bruno Andreotti; Jacco H. Snoeijer

Significance The Cheerios effect is the attraction of solid particles floating on liquids, mediated by surface tension forces. We demonstrate experimentally that a similar interaction can also occur for the inverse case, liquid particles on the surface of solids, provided that the solid is sufficiently soft. Remarkably, depending on the thickness of the solid layer, the interaction can be either purely attractive or become repulsive. A theoretical model, in excellent agreement with the experimental data, shows that the interaction requires both elasticity and capillarity. Interactions between objects on soft substrates could play an important role in phenomena of cell–cell interaction and cell adhesion to biological tissues, and be exploited to engineer soft smart surfaces for controlled drop coalescence and colloidal assembly. Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop–drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the “Cheerios effect.” The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.


Scientific Reports | 2015

Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

Kristina Sliogeryte; Stephen D. Thorpe; David A. Lee; Lorenzo Botto; Martin M. Knight

This study examines how differentiation of human mesenchymal stem cells regulates the interaction between the cell membrane and the actin cortex controlling cell behavior. Micropipette aspiration was used to measure the pressure required for membrane-cortex detachment which increased from 0.15 kPa in stem cells to 0.71 kPa following chondrogenic differentiation. This effect was associated with reduced susceptibility to mechanical and osmotic bleb formation, reduced migration and an increase in cell modulus. Theoretical modelling of bleb formation demonstrated that the increased stiffness of differentiated cells was due to the increased membrane-cortex adhesion. Differentiated cells exhibited greater F-actin density and slower actin remodelling. Differentiated cells also expressed greater levels of the membrane-cortex ezrin, radixin, moeisin (ERM) linker proteins which was responsible for the reduced blebability, as confirmed by transfection of stem cells with dominant active ezrin-T567D-GFP. This study demonstrates that stem cells have an inherently weak membrane-cortex adhesion which increases blebability thereby regulating cell migration and stiffness.


Physics of Fluids | 2012

A fully resolved numerical simulation of turbulent flow past one or several spherical particles

Lorenzo Botto; Andrea Prosperetti

The flow past one or nine spheres arranged in a plane lattice held fixed in a stream of decaying homogeneous isotropic turbulence is studied by means of fully resolved Navier-Stokes simulations. The particle radius is 3?5 times the Kolmogorov length and about 1/3 of the integral length scale. The mean particle Reynolds number is 80 and the turbulence intensity 17% and 33%. Several features of the flow are described: the mean and fluctuating dissipation and its spatial distribution, the mean and fluctuating hydrodynamic forces on the spheres, stimulated vortex shedding, and others. A special attention is paid to the relation between the work done on the fluid by the particles (in the reference frame of the former) and the total dissipation. It is shown that these quantities, which are assumed to balance in many point-particle models, can actually be very different when inertial effects are important.

Collaboration


Dive into the Lorenzo Botto's collaboration.

Top Co-Authors

Avatar

Kathleen J. Stebe

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacco H. Snoeijer

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvaro Mata

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Chuan Gu

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Lu Yao

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge