Lorenzo Bruzzone
University of Trento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorenzo Bruzzone.
IEEE Transactions on Geoscience and Remote Sensing | 2004
Farid Melgani; Lorenzo Bruzzone
This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs). First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces. Then, we assess the effectiveness of SVMs with respect to conventional feature-reduction-based approaches and their performances in hypersubspaces of various dimensionalities. To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (i.e., radial basis function neural networks and the K-nearest neighbor classifier). Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data. In particular, four different multiclass strategies are analyzed and compared: the one-against-all, the one-against-one, and two hierarchical tree-based strategies. Different performance indicators have been used to support our experimental studies in a detailed and accurate way, i.e., the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture. The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (feature-reduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data.
IEEE Transactions on Geoscience and Remote Sensing | 2005
Gustavo Camps-Valls; Lorenzo Bruzzone
This paper presents the framework of kernel-based methods in the context of hyperspectral image classification, illustrating from a general viewpoint the main characteristics of different kernel-based approaches and analyzing their properties in the hyperspectral domain. In particular, we assess performance of regularized radial basis function neural networks (Reg-RBFNN), standard support vector machines (SVMs), kernel Fisher discriminant (KFD) analysis, and regularized AdaBoost (Reg-AB). The novelty of this work consists in: 1) introducing Reg-RBFNN and Reg-AB for hyperspectral image classification; 2) comparing kernel-based methods by taking into account the peculiarities of hyperspectral images; and 3) clarifying their theoretical relationships. To these purposes, we focus on the accuracy of methods when working in noisy environments, high input dimension, and limited training sets. In addition, some other important issues are discussed, such as the sparsity of the solutions, the computational burden, and the capability of the methods to provide outputs that can be directly interpreted as probabilities.
IEEE Transactions on Geoscience and Remote Sensing | 2005
Yakoub Bazi; Lorenzo Bruzzone; Farid Melgani
We present a novel automatic and unsupervised change-detection approach specifically oriented to the analysis of multitemporal single-channel single-polarization synthetic aperture radar (SAR) images. This approach is based on a closed-loop process made up of three main steps: (1) a novel preprocessing based on a controlled adaptive iterative filtering; (2) a comparison between multitemporal images carried out according to a standard log-ratio operator; and (3) a novel approach to the automatic analysis of the log-ratio image for generating the change-detection map. The first step aims at reducing the speckle noise in a controlled way in order to maximize the discrimination capability between changed and unchanged classes. In the second step, the two filtered multitemporal images are compared to generate a log-ratio image that contains explicit information on changed areas. The third step produces the change-detection map according to a thresholding procedure based on a reformulation of the Kittler-Illingworth (KI) threshold selection criterion. In particular, the modified KI criterion is derived under the generalized Gaussian assumption for modeling the distributions of changed and unchanged classes. This parametric model was chosen because it is capable of better fitting the conditional densities of classes in the log-ratio image. In order to control the filtering step and, accordingly, the effects of the filtering process on change-detection accuracy, we propose to identify automatically the optimal number of despeckling filter iterations [Step 1] by analyzing the behavior of the modified KI criterion. This results in a completely automatic and self-consistent change-detection approach that avoids the use of empirical methods for the selection of the best number of filtering iterations. Experiments carried out on two sets of multitemporal images (characterized by different levels of speckle noise) acquired by the European Remote Sensing 2 satellite SAR sensor confirm the effectiveness of the proposed unsupervised approach, which results in change-detection accuracies very similar to those that can be achieved by a manual supervised thresholding.
Psychophysiology | 2011
Andrea Mognon; Jorge Jovicich; Lorenzo Bruzzone; Marco Buiatti
A successful method for removing artifacts from electroencephalogram (EEG) recordings is Independent Component Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific spatial and temporal features. Features were optimized to capture blinks, eye movements, and generic discontinuities on a feature selection dataset. Validation on a totally different EEG dataset shows that (1) ADJUSTs classification of independent components largely matches a manual one by experts (agreement on 95.2% of the data variance), and (2) Removal of the artifacted components detected by ADJUST leads to neat reconstruction of visual and auditory event-related potentials from heavily artifacted data. These results demonstrate that ADJUST provides a fast, efficient, and automatic way to use ICA for artifact removal.
IEEE Transactions on Geoscience and Remote Sensing | 2006
Lorenzo Bruzzone; Mingmin Chi; Mattia Marconcini
This paper introduces a semisupervised classification method that exploits both labeled and unlabeled samples for addressing ill-posed problems with support vector machines (SVMs). The method is based on recent developments in statistical learning theory concerning transductive inference and in particular transductive SVMs (TSVMs). TSVMs exploit specific iterative algorithms which gradually search a reliable separating hyperplane (in the kernel space) with a transductive process that incorporates both labeled and unlabeled samples in the training phase. Based on an analysis of the properties of the TSVMs presented in the literature, a novel modified TSVM classifier designed for addressing ill-posed remote-sensing problems is proposed. In particular, the proposed technique: 1) is based on a novel transductive procedure that exploits a weighting strategy for unlabeled patterns, based on a time-dependent criterion; 2) is able to mitigate the effects of suboptimal model selection (which is unavoidable in the presence of small-size training sets); and 3) can address multiclass cases. Experimental results confirm the effectiveness of the proposed method on a set of ill-posed remote-sensing classification problems representing different operative conditions
IEEE Transactions on Geoscience and Remote Sensing | 2010
M. Dalla Mura; J. Atli Benediktsson; Björn Waske; Lorenzo Bruzzone
Morphological attribute profiles (APs) are defined as a generalization of the recently proposed morphological profiles (MPs). APs provide a multilevel characterization of an image created by the sequential application of morphological attribute filters that can be used to model different kinds of the structural information. According to the type of the attributes considered in the morphological attribute transformation, different parametric features can be modeled. The generation of APs, thanks to an efficient implementation, strongly reduces the computational load required for the computation of conventional MPs. Moreover, the characterization of the image with different attributes leads to a more complete description of the scene and to a more accurate modeling of the spatial information than with the use of conventional morphological filters based on a predefined structuring element. Here, the features extracted by the proposed operators were used for the classification of two very high resolution panchromatic images acquired by Quickbird on the city of Trento, Italy. The experimental analysis proved the usefulness of APs in modeling the spatial information present in the images. The classification maps obtained by considering different APs result in a better description of the scene (both in terms of thematic and geometric accuracy) than those obtained with an MP.
IEEE Transactions on Geoscience and Remote Sensing | 2008
Michele Dalponte; Lorenzo Bruzzone; Damiano Gianelle
In this paper, we propose an analysis on the joint effect of hyperspectral and light detection and ranging (LIDAR) data for the classification of complex forest areas. In greater detail, we present: 1) an advanced system for the joint use of hyperspectral and LIDAR data in complex classification problems; 2) an investigation on the effectiveness of the very promising support vector machines (SVMs) and Gaussian maximum likelihood with leave-one-out-covariance algorithm classifiers for the analysis of complex forest scenarios characterized from a high number of species in a multisource framework; and 3) an analysis on the effectiveness of different LIDAR returns and channels (elevation and intensity) for increasing the classification accuracy obtained with hyperspectral images, particularly in relation to the discrimination of very similar classes. Several experiments carried out on a complex forest area in Italy provide interesting conclusions on the effectiveness and potentialities of the joint use of hyperspectral and LIDAR data and on the accuracy of the different classification techniques analyzed in the proposed system. In particular, the elevation channel of the first LIDAR return was very effective for the separation of species with similar spectral signatures but different mean heights, and the SVM classifier proved to be very robust and accurate in the exploitation of the considered multisource data.
IEEE Transactions on Image Processing | 2002
Lorenzo Bruzzone; Diego Fernandez Prieto
In this paper, a novel automatic approach to the unsupervised identification of changes in multitemporal remote-sensing images is proposed. This approach, unlike classical ones, is based on the formulation of the unsupervised change-detection problem in terms of the Bayesian decision theory. In this context, an adaptive semiparametric technique for the unsupervised estimation of the statistical terms associated with the gray levels of changed and unchanged pixels in a difference image is presented. Such a technique exploits the effectivenesses of two theoretically well-founded estimation procedures: the reduced Parzen estimate (RPE) procedure and the expectation-maximization (EM) algorithm. Then, thanks to the resulting estimates and to a Markov random field (MRF) approach used to model the spatial-contextual information contained in the multitemporal images considered, a change detection map is generated. The adaptive semiparametric nature of the proposed technique allows its application to different kinds of remote-sensing images. Experimental results, obtained on two sets of multitemporal remote-sensing images acquired by two different sensors, confirm the validity of the proposed approach.
IEEE Transactions on Geoscience and Remote Sensing | 2006
Lorenzo Bruzzone; Lorenzo Carlin
This paper proposes a novel pixel-based system for the supervised classification of very high geometrical (spatial) resolution images. This system is aimed at obtaining accurate and reliable maps both by preserving the geometrical details in the images and by properly considering the spatial-context information. It is made up of two main blocks: 1) a novel feature-extraction block that, extending and developing some concepts previously presented in the literature, adaptively models the spatial context of each pixel according to a complete hierarchical multilevel representation of the scene and 2) a classifier, based on support vector machines (SVMs), capable of analyzing hyperdimensional feature spaces. The choice of adopting an SVM-based classification architecture is motivated by the potentially large number of parameters derived from the contextual feature-extraction stage. Experimental results and comparisons with a standard technique developed for the analysis of very high spatial resolution images confirm the effectiveness of the proposed system
Information Fusion | 2002
Giovanni Simone; Alfonso Farina; Francesco Carlo Morabito; Sebastiano B. Serpico; Lorenzo Bruzzone
Image fusion refers to the acquisition, processing andsynergistic combination of information providedby various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the synthetic aperture radar (SAR) interferometry, where a pair of antennas are usedto obtain an elevation map of the observedscene; the secondone refers to the fusion of multisensor andmultitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the thirdone presents a processor to fuse multifrequency, multipolarization andmutiresolution SAR images, basedon wavelet transform andmultiscale Kalman filter (MKF). Each stud y case presents also the results achievedby the proposedtechniques appliedto real d ata. � 2002 Elsevier Science B.V. All rights reserved.