Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorenzo Masia is active.

Publication


Featured researches published by Lorenzo Masia.


IEEE-ASME Transactions on Mechatronics | 2007

Design and Characterization of Hand Module for Whole-Arm Rehabilitation Following Stroke

Lorenzo Masia; Hermano Igo Krebs; Paolo Cappa; Neville Hogan

In 1991, a novel robot named MIT-MANUS was introduced as a test bed to study the potential of using robots to assist in and quantify the neurorehabilitation of motor function. It introduced a new modality of therapy, offering a highly backdrivable experience with a soft and stable feel for the user. MIT-MANUS proved an excellent fit for shoulder and elbow rehabilitation in stroke patients, showing a reduction of impairment in clinical trials with well over 300 stroke patients. The greatest impairment reduction was observed in the group of muscles exercised. This suggests a need for additional robots to rehabilitate other target areas of the body. Previous work has expanded the planar MIT-MANUS to include an antigravity robot for shoulder and elbow, and a wrist robot. In this paper we present the ldquomissing linkrdquo: a hand robot. It consists of a single-degree-of-freedom (DOF) mechanism in a novel statorless configuration, which enables rehabilitation of grasping. The system uses the kinematic configuration of a double crank and slider where the members are linked to stator and rotor; a free base motor, i.e., a motor having two rotors that are free to rotate instead of a fixed stator and a single rotatable rotor (dual-rotor statorless motor). A cylindrical structure, made of six panels and driven by the relative rotation of the rotors, is able to increase its radius linearly, moving or guiding the hand of the patients during grasping. This module completes our development of robots for the upper extremity, yielding for the first time a whole-arm rehabilitation experience. In this paper, we discuss in detail the design and characterization of the device.


Brain | 2012

Parkinson's disease accelerates age-related decline in haptic perception by altering somatosensory integration.

Juergen Konczak; Alessandra Sciutti; Laura Avanzino; Valentina Squeri; Monica Gori; Lorenzo Masia; Giovanni Abbruzzese; Giulio Sandini

This study investigated how Parkinsons disease alters haptic perception and the underlying mechanisms of somatosensory and sensorimotor integration. Changes in haptic sensitivity and acuity (the abilities to detect and to discriminate between haptic stimuli) due to Parkinsons disease were systematically quantified and contrasted to the performance of healthy older and young adults. Using a robotic force environment, virtual contours of various curvatures were presented. Participants explored these contours with their hands and indicated verbally whether they could detect or discriminate between two contours. To understand what aspects of sensory or sensorimotor integration are altered by ageing and disease, we manipulated the sensorimotor aspect of the task: the robot either guided the hand along the contour or the participant actively moved the hand. Active exploration relies on multimodal sensory and sensorimotor integration, while passive guidance only requires sensory integration of proprioceptive and tactile information. The main findings of the study are as follows: first, a decline in haptic precision can already be observed in adults before the age of 70 years. Parkinsons disease may lead to an additional decrease in haptic sensitivity well beyond the levels typically seen in middle-aged and older adults. Second, the haptic deficit in Parkinsons disease is general in nature. It becomes manifest as a decrease in sensitivity and acuity (i.e. a smaller perceivable range and a diminished ability to discriminate between two perceivable haptic stimuli). Third, thresholds during both active and passive exploration are elevated, but not significantly different from each other. That is, active exploration did not enhance the haptic deficit when compared to passive hand motion. This implies that Parkinsons disease affects early stages of somatosensory integration that ultimately have an impact on processes of sensorimotor integration. Our results suggest that the known motor problems in Parkinsons disease that are generally characterized as a failure of sensorimotor integration may, in fact, have a sensory origin.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2014

Wrist Rehabilitation in Chronic Stroke Patients by Means of Adaptive, Progressive Robot-Aided Therapy

Valentina Squeri; Lorenzo Masia; Psiche Giannoni; Giulio Sandini; Pietro Morasso

Despite distal arm impairment after brain injury is an extremely disabling consequence of neurological damage, most studies on robotic therapy are mainly focused on recovery of proximal upper limb motor functions, routing the major efforts in rehabilitation to shoulder and elbow joints. In the present study we developed a novel therapeutic protocol aimed at restoring wrist functionality in chronic stroke patients. A haptic three DoFs (degrees of freedom) robot has been used to quantify motor impairment and assist wrist and forearm articular movements: flexion/extension (FE), abduction/adduction (AA), pronation/supination (PS). This preliminary study involved nine stroke patients, from a mild to severe level of impairment. Therapy consisted in ten 1-hour sessions over a period of five weeks. The novelty of the approach was the adaptive control scheme which trained wrist movements with slow oscillatory patterns of small amplitude and progressively increasing bias, in order to maximize the recovery of the active range of motion. The primary outcome was a change in the active RoM (range of motion) for each DoF and a change of motor function, as measured by the Fugl-Meyer assessment of arm physical performance after stroke (FMA). The secondary outcome was the score on the Wolf Motor Function Test (WOLF). The FMA score reported a significant improvement (average of 9.33±1.89 points), revealing a reduction of the upper extremity motor impairment over the sessions; moreover, a detailed component analysis of the score hinted at some degree of motor recovery transfer from the distal, trained parts of the arm to the proximal untrained parts. WOLF showed an improvement of 8.31±2.77 points, highlighting an increase in functional capability for the whole arm. The active RoM displayed a remarkable improvement. Moreover, a three-months follow up assessment reported long lasting benefits in both distal and proximal arm functionalities. The experimental results of this preliminary clinical study provide enough empirical evidence for introducing the novel progressive, adaptive, gentle robotic assistance of wrist movements in the clinical practice, consolidating the evaluation of its efficacy by means of a controlled clinical trial.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2011

Force Field Adaptation Can Be Learned Using Vision in the Absence of Proprioceptive Error

Alejandro Melendez-Calderon; Lorenzo Masia; Roger Gassert; Giulio Sandini; Etienne Burdet

It has been shown that people can learn to perform a variety of motor tasks in novel dynamic environments without visual feedback, highlighting the importance of proprioceptive feedback in motor learning. However, our results show that it is possible to learn a viscous curl force field without proprioceptive error to drive adaptation, by providing visual information about the position error. Subjects performed reaching movements in a constraining channel created by a robotic interface. The force that subjects applied against the haptic channel was used to predict the unconstrained hand trajectory under a viscous curl force field. This trajectory was provided as visual feedback to the subjects during movement (virtual dynamics). Subjects were able to use this visual information (discrepant with proprioception) and gradually learned to compensate for the virtual dynamics. Unconstrained catch trials, performed without the haptic channel after learning the virtual dynamics, exhibited similar trajectories to those of subjects who learned to move in the force field in the unconstrained environment. Our results demonstrate that the internal model of the external dynamics that was formed through learning without proprioceptive error was accurate enough to allow compensation for the force field in the unconstrained environment. They suggest a method to overcome limitations in learning resulting from mechanical constraints of robotic trainers by providing suitable visual feedback, potentially enabling efficient physical training and rehabilitation using simple robotic devices with few degrees-of-freedom.


PLOS ONE | 2009

Eye-hand coordination during dynamic visuomotor rotations.

Lorenzo Masia; Maura Casadio; Giulio Sandini; Pietro Morasso

Background for many technology-driven visuomotor tasks such as tele-surgery, human operators face situations in which the frames of reference for vision and action are misaligned and need to be compensated in order to perform the tasks with the necessary precision. The cognitive mechanisms for the selection of appropriate frames of reference are still not fully understood. This study investigated the effect of changing visual and kinesthetic frames of reference during wrist pointing, simulating activities typical for tele-operations. Methods using a robotic manipulandum, subjects had to perform center-out pointing movements to visual targets presented on a computer screen, by coordinating wrist flexion/extension with abduction/adduction. We compared movements in which the frames of reference were aligned (unperturbed condition) with movements performed under different combinations of visual/kinesthetic dynamic perturbations. The visual frame of reference was centered to the computer screen, while the kinesthetic frame was centered around the wrist joint. Both frames changed their orientation dynamically (angular velocity = 36°/s) with respect to the head-centered frame of reference (the eyes). Perturbations were either unimodal (visual or kinesthetic), or bimodal (visual+kinesthetic). As expected, pointing performance was best in the unperturbed condition. The spatial pointing error dramatically worsened during both unimodal and most bimodal conditions. However, in the bimodal condition, in which both disturbances were in phase, adaptation was very fast and kinematic performance indicators approached the values of the unperturbed condition. Conclusions this result suggests that subjects learned to exploit an “affordance” made available by the invariant phase relation between the visual and kinesthetic frames. It seems that after detecting such invariance, subjects used the kinesthetic input as an informative signal rather than a disturbance, in order to compensate the visual rotation without going through the lengthy process of building an internal adaptation model. Practical implications are discussed as regards the design of advanced, high-performance man-machine interfaces.


Frontiers in Human Neuroscience | 2015

Robot-Aided Assessment of Wrist Proprioception

Leonardo Cappello; Naveen Elangovan; Sara Contu; Sanaz Khosravani; Jã¼Rgen Konczak; Lorenzo Masia

Introduction Impaired proprioception severely affects the control of gross and fine motor function. However, clinical assessment of proprioceptive deficits and its impact on motor function has been difficult to elucidate. Recent advances in haptic robotic interfaces designed for sensorimotor rehabilitation enabled the use of such devices for the assessment of proprioceptive function. Purpose This study evaluated the feasibility of a wrist robot system to determine proprioceptive discrimination thresholds for two different DoFs of the wrist. Specifically, we sought to accomplish three aims: first, to establish data validity; second, to show that the system is sensitive to detect small differences in acuity; third, to establish test–retest reliability over repeated testing. Methodology Eleven healthy adult subjects experienced two passive wrist movements and had to verbally indicate which movement had the larger amplitude. Based on a subject’s response data, a psychometric function was fitted and the wrist acuity threshold was established at the 75% correct response level. A subset of five subjects repeated the experimentation three times (T1, T2, and T3) to determine the test–retest reliability. Results Mean threshold for wrist flexion was 2.15°± 0.43° and 1.52°± 0.36° for abduction. Encoder resolutions were 0.0075°(flexion–extension) and 0.0032°(abduction–adduction). Motor resolutions were 0.2°(flexion–extension) and 0.3°(abduction–adduction). Reliability coefficients were rT2-T1 = 0.986 and rT3-T2 = 0.971. Conclusion We currently lack established norm data on the proprioceptive acuity of the wrist to establish direct validity. However, the magnitude of our reported thresholds is physiological, plausible, and well in line with available threshold data obtained at the elbow joint. Moreover, system has high resolution and is sensitive enough to detect small differences in acuity. Finally, the system produces reliable data over repeated testing.


Experimental Brain Research | 2012

Motor commands in children interfere with their haptic perception of objects

Monica Gori; Valentina Squeri; Alessandra Sciutti; Lorenzo Masia; Giulio Sandini; Juergen Konczak

Neural processes of sensory-motor- and motor-sensory integration link perception and action, forming the basis for human interaction with the environment. Haptic perception, the ability to extract object features through action, is based on these processes. To study the development of motor-sensory integration, children judged the curvature of virtual objects after exploring them actively or while guided passively by a robot. Haptic acuity reached adult levels only at early adolescence. Unlike in adults, haptic precision in children was consistently lower during active exploration when compared to passive motion. Thus, the exploratory movements themselves constitute a form of noise for the developing haptic system that younger brains cannot compensate until mid-adolescence. Computationally, this is consistent with a noisy efference copy mechanism producing imprecise predicted sensory feedback, which compromises haptic precision in children, while the mature mechanism aids the adult brain to account for the effect of self-generated motion on perception.


Experimental Brain Research | 2010

Predicted sensory feedback derived from motor commands does not improve haptic sensitivity

Alessandra Sciutti; Valentina Squeri; Monica Gori; Lorenzo Masia; Giulio Sandini; Juergen Konczak

Haptic perception is based on the integration of afferent proprioceptive and tactile signals. A further potential source of information during active touch is predicted sensory feedback (PSF) derived from a copy of efferent motor commands that give rise to the exploratory actions. There is substantial evidence that PSF is important for predicting the sensory consequences of action, but its role in perception is unknown. Theoretically, PSF leads to a higher redundancy of haptic information, which should improve sensitivity of the haptic sense. To investigate the effect of PSF on haptic precision, blindfolded subjects haptically explored the curved contour of a virtual object generated by a robotic manipulandum. They either actively moved their hand along the contour, or their hand was moved passively by the device along the same contour. In the active condition afferent sensory information and PSF were present, while in the passive condition subjects relied solely on afferent information. In each trial, two stimuli of different curvature were presented. Subjects needed to indicate which of the two was more “curved” (forced choice). For each condition, the detection and three discrimination thresholds were computed. The main finding is that absence of efference copy information did not systematically degrade haptic acuity. This indirectly implies that PSF does not aid or enhance haptic perception. We conclude that when maximum haptic sensitivity is required to explore novel objects, the perceptual system relies primarily on afferent tactile and proprioceptive information, and PSF has no added effect on the precision of the perceptual estimate.


PLOS ONE | 2010

Force-Field Compensation in a Manual Tracking Task

Valentina Squeri; Lorenzo Masia; Maura Casadio; Pietro Morasso; Elena Vergaro

This study addresses force/movement control in a dynamic “hybrid” task: the master sub-task is continuous manual tracking of a target moving along an eight-shaped Lissajous figure, with the tracking error as the primary performance index; the slave sub-task is compensation of a disturbing curl viscous field, compatibly with the primary performance index. The two sub-tasks are correlated because the lateral force the subject must exert on the eight-shape must be proportional to the longitudinal movement speed in order to perform a good tracking. The results confirm that visuo-manual tracking is characterized by an intermittent control mechanism, in agreement with previous work; the novel finding is that the overall control patterns are not altered by the presence of a large deviating force field, if compared with the undisturbed condition. It is also found that the control of interaction-forces is achieved by a combination of arm stiffness properties and direct force control, as suggested by the systematic lateral deviation of the trajectories from the nominal path and the comparison between perturbed trials and catch trials. The coordination of the two sub-tasks is quickly learnt after the activation of the deviating force field and is achieved by a combination of force and the stiffness components (about 80% vs. 20%), which is a function of the implicit accuracy of the tracking task.


Frontiers in Human Neuroscience | 2015

Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke

Dalia De Santis; Jacopo Zenzeri; Maura Casadio; Lorenzo Masia; Assunta Riva; Pietro Morasso; Valentina Squeri

Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration, and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved seven chronic hemiparetic subjects over 3 weeks. The protocol included evaluation sessions that consisted of a psychometric estimate of the subject’s kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their improvement in time.

Collaboration


Dive into the Lorenzo Masia's collaboration.

Top Co-Authors

Avatar

Pietro Morasso

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Valentina Squeri

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Giulio Sandini

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Leonardo Cappello

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Contu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Francesca Marini

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Chris Wilson Antuvan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Paolo Cappa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Charmayne Hughes

San Francisco State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge