Lorenzo Morelli
Catholic University of the Sacred Heart
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorenzo Morelli.
International Journal of Food Microbiology | 1998
Seppo Salminen; Lorenzo Morelli; Philippe Marteau; W.M. de Vos; Rangne Fondén; Maija Saxelin; K. Collins; G. Mogensen; S.E. Birkeland; Tiina Mattila-Sandholm
Probiotics are commonly defined as viable microorganisms (bacteria or yeasts) that exhibit a beneficial effect on the health of the host when they are ingested. They are used in foods, especially in fermented dairy products, but also in pharmaceutical preparations. The development of new probiotic strains aims at more active beneficial organisms. In the case of novel microorganisms and modified organisms the question of their safety and the risk to benefit ratio have to be assessed. Lactic acid bacteria (LAB) in foods have a long history of safe use. Members of the genera Lactococcus and Lactobacillus are most commonly given generally-recognised-as-safe (GRAS) status whilst members of the genera Streptococcus and Enterococcus and some other genera of LAB contain some opportunistic pathogens. Lactic acid bacteria are intrinsically resistant to many antibiotics. In many cases resistances are not, however, transmissible, and the species are also sensitive to many clinically used antibiotics even in the case of a lactic acid bacteria- associated opportunistic infection. Therefore no particular safety concern is associated with intrinsic type of resistance. Plasmid-associated antibiotic resistance, which occasionally occurs, is another matter because of the possibility of the resistance spreading to other, more harmful species and genera. The transmissible enterococcal resistance against glycopeptide antibiotics (vancomycin and teicoplanin) is particularly noteworthy, as vancomycin is one of the last effective antibiotics left in the treatment of certain multidrug-resistant pathogens. New species and more specific strains of probiotic bacteria are constantly identified. Prior to incorporating new strains into products their efficacy should be carefully assessed, and a case by case evaluation as to whether they share the safety status of traditional food-grade organisms should be made. The current documentation of adverse effects in the literature is reviewed. Future recommendations for the safety of already existing and new probiotics will be given.
Journal of Food Protection | 1998
William P Charteris; Phillip M. Kelly; Lorenzo Morelli; J.K. Collins
In recent years, the time-honored reputation of lactobacilli as promoters of gastrointestinal and female urogenital health has been qualified. This has occurred due to a rare association with human infection in the presence of certain predisposing factors and their potential to act as a source of undesirable antibiotic resistance determinants to other members of the indigenous microbiota. This necessitates greater caution in their selection for use in microbial adjunct nutrition and disease management (prophylaxis and therapy). It was against this background that 46 Lactobacillus strains from human and dairy sources were assayed for susceptibility to 44 antibiotics. All strains were resistant to a group of 14 antibiotics, which included inhibitors of cell wall synthesis (cefoxitin [30 microg] and aztreonam [30 microg]), protein synthesis (amikacin [30 microg], gentamicin [10 microg], kanamycin [30 microg], and streptomycin [10 microg]), nucleic acid synthesis (norfloxacin [10 microg], nalidixic acid [30 microg], sulphamethoxazole [100 microg], trimethoprim [5 microg], co-trimoxazole [25 microg], and metronidazole [5 microg]), and cytoplasmic membrane function (polymyxin B [300 microg] and colistin sulphate [10 microg]). All strains were susceptible to tetracycline (30 microg), chloramphenicol (30 microg), and rifampicin (5 microg). Four human strains and one dairy strain exhibited atypical resistance to a penicillin, bacitracin (10 microg), and/or nitrofurantoin (300 microg). One human strain was also resistant to erythromycin (15 microg) and clindamycin (2 microg). These resistances may have been acquired due to antibiotic exposure in vivo, but conclusive evidence is lacking in this regard. Seven microorganism-drug combinations were evaluated for beta-lactamase activity using synergy and nitrocefin tests. The absence of activity suggested that cell wall impermeability appeared responsible for beta-lactam resistance. The occurrence of a minority of lactobacilli with undesirable, atypical resistance to certain antibiotics demonstrates that not all strains are suitable for use as probiotics or bacteriotherapeutic agents. The natural resistance of lactobacilli to a wide range of clinically important antibiotics may enable the development of antibiotic/probiotic combination therapies for such conditions as diarrhea, female urogenital tract infection, and infective endocarditis.
Early Human Development | 2010
Giacomo Biasucci; Monica Rubini; Sara Riboni; Lorenzo Morelli; Elena Bessi; Cristiana Retetangos
The first colonisation of the intestine is one of the most profound immunological exposures faced by the newborn and it is influenced by external and internal factors. The early composition of human microbiota could have long-lasting metabolic effects and the initial composition of human intestinal bacteria is also known to affect postnatal immune system development, as we are already aware that reduced microbial stimulation during infancy would result in slower postnatal maturation of the immune system and development of an optimal balance between TH1 and TH2-like immunity. Mode of delivery has a major role on the composition of intestinal microbiota in early infancy, as it has been shown that infants born by Caesarean section (CS) have lower numbers of Bifidobacteria and Bacteroides compared with vaginally born infants. We designed a study to investigate the influence of mode of delivery (CS vs. vaginal delivery) on intestinal microbial composition on day 3 of life using PCR-denaturing gradient gel electrophoresis (DGGE) and PCR-temperature gradient gel electrophoresis (TGGE). Both DGGE and TGGE analyses have been used, together with the specific amplifications for 10 Bifidobacterium sp., 3 Ruminococcus sp., and Bacteroides that all have a highly relevant physiological role in the intestinal ecosystem of the newborn. A total of 46 term infants were enrolled in the study, consecutively recruiting all the CS-delivered babies (n=23; 8 males and 15 females) and the immediately following spontaneously delivered babies (n=23; 11 males and 12 females). DGGE analysis carried out with Bifidobacterium-specific primers revealed the presence of this genus in 13 of 23 (56.5%) samples derived from vaginally delivered newborns but in none of the samples obtained from newborns delivered by CS. PCR analysis with Bifidobacterium-species-specific primers showed that naturally delivered infants had a large number of bifidobacterial species, whereas in CS-delivered babies only two samples (8.7%) gave positive results, one for B. longum and another for B. gallicum. In all babies enrolled, micro-organisms belonging to Ruminococcus species were absent and Bacteroides was found in 8.7% of spontaneously delivered babies only. Based on our findings, it seems that newborns intestinal bacteria during the first 3days of life are strongly influenced by mode of delivery. The intestinal flora of CS and vaginally delivered infants appears to be very different; the former being altered and characterised by a substantial absence of Bifidobacteria sp., the latter characterised by subject-specific microbial profiles, although predominant groups such as B. longum and B. catenulatum could be identified. In summary, mode of delivery does affect the early stage of intestinal bacterial colonisation, which is altered in CS-delivered infants compared with vaginally delivered infants, with only a minor influence of the type of feeding. In addition, the importance of methodological aspects for determining intestinal microbiota in clinical trials requires emphasis if intestinal microbiota composition is to be considered a measure of postnatal adaptation.
Pediatrics | 2006
Roberto Berni Canani; Pia Cirillo; Paola Roggero; Claudio Romano; B. Malamisura; Gianluca Terrin; A. Passariello; Francesco Manguso; Lorenzo Morelli; Alfredo Guarino
OBJECTIVE. Gastric acidity (GA) inhibitors, including histamine-2 receptor antagonists (H2 blockers) and proton pump inhibitors (PPIs), are the mainstay of gastroesophageal reflux disease (GERD) treatment. A prolonged GA inhibitor–induced hypochlorhydria has been suggested as a risk factor for severe gastrointestinal infections. In addition, a number of papers and a meta-analysis have shown an increased risk of pneumonia in H2-blocker–treated intensive care patients. More recently, an increased risk of community-acquired pneumonia associated with GA inhibitor treatment has been reported in a large cohort of adult patients. These findings are particularly relevant to pediatricians today because so many children receive some sort of GA-blocking agent to treat GERD. To test the hypothesis that GA suppression could be associated with an increased risk of acute gastroenteritis and pneumonia in children treated with GA inhibitors, we conducted a multicenter, prospective study. METHODS. The study was performed by expert pediatric gastroenterologists from 4 pediatric gastroenterology centers. Children (aged 4–36 months) consecutively referred for common GERD-related symptoms (for example, regurgitation and vomiting, feeding problems, effortless vomiting, choking), from December 2003 to March 2004, were considered eligible for the study. Exclusion criteria were a history of GA inhibitors therapy in the previous 4 months, Helicobacter pylori infection, diabetes, chronic lung or heart diseases, cystic fibrosis, immunodeficiency, food allergy, congenital motility gastrointestinal disorders, neuromuscular diseases, or malnutrition. Control subjects were recruited from healthy children visiting the centers for routine examinations. The diagnosis of GERD was confirmed in all patients by standard criteria. GA inhibitors (10 mg/kg ranitidine per day in 50 children or 1 mg/kg omeprazole per day in 50 children) were prescribed by the physicians for 2 months. All enrolled children were evaluated during a 4-month follow-up. The end point was the number of patients presenting with acute gastroenteritis or community-acquired pneumonia during a 4-month follow-up study period. RESULTS. We obtained data in 186 subjects: 95 healthy controls and 91 GA-inhibitor users (47 on ranitidine and 44 on omeprazole). The 2 groups were comparable for age, gender, weight, length, and incidence of acute gastroenteritis and pneumonia in the 4 months before enrollment. Rate of subjects presenting with acute gastroenteritis and community-acquired pneumonia was significantly increased in patients treated with GA inhibitors compared with healthy controls during the 4-month follow-up period. In the GA inhibitor-treated group, the rate of subjects presenting with acute gastroenteritis and community-acquired pneumonia was increased when comparing the 4 months before and after enrollment. No differences were observed between H2 blocker and PPI users in acute gastroenteritis and pneumonia incidence in the previous 4 months and during the follow-up period. On the contrary, in healthy controls, the incidence of acute gastroenteritis and pneumonia remained stable. CONCLUSIONS. This is the first prospective study performed in pediatric patients showing that the use of GA inhibitors was associated with an increased risk of acute gastroenteritis and community-acquired pneumonia in GERD-affected children. It could be interesting to underline that we observed an increased incidence of intestinal and respiratory infection in otherwise healthy children taking GA inhibitors for GERD treatment. On the contrary, the majority of the previous data showed that the patients most at risk for pneumonia were those with significant comorbid illnesses such as diabetes or immunodeficiency, and this points to the importance of GA suppression as a major risk factor for infections. In addition, this effect seems to be sustained even after the end of therapy. The results of our study are attributable to many factors, including direct inhibitory effect of GA inhibitors on leukocyte functions and qualitative and quantitative gastrointestinal microflora modification. Additional studies are necessary to investigate the mechanisms of the increased risk of infections in children treated with GA inhibitors, and prophylactic measures could be considered in preventing them.
British Journal of Nutrition | 2005
Francisco Guarner; Gabriela Perdigón; Gérard Corthier; Seppo Salminen; Berthold Koletzko; Lorenzo Morelli
Probiotics are live micro-organisms that when administered in adequate amounts confer a health benefit on the host. Consumption of yoghurt has been shown to induce measurable health benefits linked to the presence of live bacteria. A number of human studies have clearly demonstrated that yoghurt containing viable bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii sp. bulgaricus) improves lactose digestion and eliminates symptoms of lactose intolerance. Thus, these cultures clearly fulfil the current concept of probiotics.
Journal of Clinical Gastroenterology | 2008
Maya Pineiro; Nils-Georg Asp; Gregor Reid; Sandra Macfarlane; Lorenzo Morelli; Oscar Brunser; Kieran M. Tuohy
Recognizing the possible beneficial effect of prebiotics in food, the Food and Agriculture Organization of the United Nations (FAO) convened a Technical meeting to start work on the evaluation of the functional and health properties of prebiotics. A group of international experts agreed on guidelines, recommended criteria, and methodology for conducting a systematic approach for the evaluation of prebiotics leading to its safe use in food. It was recommended that a full expert consultation be convened under the auspices of FAO. This work provides governments, industry, and consumers with scientific advice in relation to functional and health aspects of prebiotics and general guidance for the assessment of prebiotics in relation to their nutritional properties or safety. These guidelines may also be used by Member Countries and Codex Alimentarius to identify and define what data need to be available to accurately substantiate health and nutrition claims.
Pharmacological Research | 2011
Paolo Aureli; Lucio Capurso; Anna Maria Castellazzi; Mario Clerici; Marcello Giovannini; Lorenzo Morelli; Andrea Poli; Fabrizio Pregliasco; Filippo Salvini; Gian Vincenzo Zuccotti
The intestinal microbiota is an ecosystem formed by a variety of ecological niches, made of several bacterial species and a very large amount of strains. The microbiota is in close contact with the intestinal mucosa or epithelial interface which is, after the respiratory area, the largest surface of the body, occupying approximately 250-400 m(2). The physiological activities of the microbiota are manifold and are just being unraveled. Based on the observations of the multiple roles played by the microbiota in health and disease, the notion of modifying it with appropriate formulations, i.e. probiotics, is being tested in several settings. This review summarizes the current knowledge on probiotics and discusses both limitations and acquired evidence to support their use in preventive and therapeutic medicine.
Digestive and Liver Disease | 2006
M. Del Piano; Lorenzo Morelli; Gian Paolo Strozzi; Serena Allesina; M. Barba; Francesca Deidda; Paola Lorenzini; M. Ballarè; F. Montino; M. Orsello; M. Sartori; E. Garello; S. Carmagnola; M. Pagliarulo; Lucio Capurso
Intestinal microflora has metabolic, trophic and protective functions, and can be modified in pathological conditions and by the exogenous administration of probiotics. Probiotics are defined as living microorganisms which resist gastric, bile, and pancreatic secretions, attach to epithelial cells and colonize the human intestine. In the last twenty years research has been focused on the identification of the role of planktonic flora and adhesive bacteria in health and disease, and on the requisite of bacterial strains to become probiotic product which can be marketed. Probiotics can be commercialized either as nutritional supplements, pharmaceuticals or foods, but the marketing as a pharmaceutical product requires significant time, complex and costly research, and the demonstration of a well-defined therapeutic target. This review examines the sequential steps of research which, from the identification of a possible probiotic strain, lead to its production and marketing, summarizing the whole process existing behind its development, through its growth in laboratory, the studies performed to test its resistance to human secretions and stability, microencapsulation technologies, and safety tests.
Applied and Environmental Microbiology | 2005
Paola Lavermicocca; Francesca Valerio; Stella Lisa Lonigro; Maria De Angelis; Lorenzo Morelli; Maria Luisa Callegari; Carlo Giuseppe Rizzello; Angelo Visconti
ABSTRACT With the aim of developing new functional foods, a traditional product, the table olive, was used as a vehicle for incorporating probiotic bacterial species. Survival on table olives of Lactobacillus rhamnosus (three strains), Lactobacillus paracasei (two strains), Bifidobacterium bifidum (one strain), and Bifidobacterium longum (one strain) at room temperature was investigated. The results obtained using a selected olive sample demonstrated that bifidobacteria and one strain of L. rhamnosus (Lactobacillus GG) showed a good survival rate, with a recovery of about 106 CFU g−1 after 30 days. The Lactobacillus GG population remained unvaried until the end of the experiment, while a slight decline (to about 105 CFU g−1) was observed for bifidobacteria. High viability, with more than 107 CFU g−1, was observed throughout the 3-month experiment for L. paracasei IMPC2.1. This strain, selected for its potential probiotic characteristics and for its lengthy survival on olives, was used to validate table olives as a carrier for transporting bacterial cells into the human gastrointestinal tract. L. paracasei IMPC2.1 was recovered from fecal samples in four out of five volunteers fed 10 to 15 olives per day carrying about 109 to 1010 viable cells for 10 days.
Fems Microbiology Reviews | 1997
Terrance J. Beveridge; Peter H. Pouwels; Margit Sára; Anja Kotiranta; Kari Lounatmaa; Kirsti Kari; Eero Kerosuo; Markus Haapasalo; Eva M. Egelseer; Ingrid Schocher; Uwe B. Sleytr; Lorenzo Morelli; Maria-Luisa Callegari; John F. Nomellini; Wade H. Bingle; John Smit; Emmanuelle Leibovitz; Marc Lemaire; Isabelle Miras; Sylvie Salamitou; Pierre Béguin; Hélène Ohayon; Pierre Gounon; Markus Matuschek; Kerstin Sahm; Hubert Bahl; Rosemary Grogono-Thomas; Joel Dworkin; Martin J. Blaser; Ralph M. Woodland
Although S-layers are being increasingly identified on Bacteria and Archaea, it is enigmatic that in most cases S-layer function continues to elude us. In a few instances, S-layers have been shown to be virulence factors on pathogens (e.g. Campylobacter fetus ssp. fetus and Aeromonas salmonicida), protective against Bdellovibrio, a depository for surface-exposed enzymes (e.g. Bacillus stearothermophilus), shape-determining agents (e.g. Thermoproteus tenax) and nucleation factors for fine-grain mineral development (e.g. Synechococcus GL 24). Yet, for the vast majority of S-layered bacteria, the natural function of these crystalline arrays continues to be evasive. The following review up-dates the functional basis of S-layers and describes such diverse topics as the effect of S-layers on the Gram stain, bacteriophage adsorption in lactobacilli, phagocytosis by human polymorphonuclear leukocytes, the adhesion of a high-molecular-mass amylase, outer membrane porosity, and the secretion of extracellular enzymes of Thermoanaerobacterium. In addition, the functional aspect of calcium on the Caulobacter S-layer is explained.