Lorenzo Natale
Istituto Italiano di Tecnologia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorenzo Natale.
International Journal of Advanced Robotic Systems | 2006
Giorgio Metta; Paul Fitzpatrick; Lorenzo Natale
We describe YARP, Yet Another Robot Platform, an open-source project that encapsulates lessons from our experience in building humanoid robots. The goal of YARP is to minimize the effort devoted to infrastructure-level software development by facilitating code reuse, modularity and so maximize research-level development and collaboration. Humanoid robotics is a “bleeding edge” field of research, with constant flux in sensors, actuators, and processors. Code reuse and maintenance is therefore a significant challenge. We describe the main problems we faced and the solutions we adopted. In short, the main features of YARP include support for inter-process communication, image processing as well as a class hierarchy to ease code reuse across different hardware platforms. YARP is currently used and tested on Windows, Linux and QNX6 which are common operating systems used in robotics.
performance metrics for intelligent systems | 2008
Giorgio Metta; Giulio Sandini; David Vernon; Lorenzo Natale; Francesco Nori
We report about the iCub, a humanoid robot for research in embodied cognition. At 104 cm tall, the iCub has the size of a three and half year old child. It will be able to crawl on all fours and sit up to manipulate objects. Its hands have been designed to support sophisticate manipulation skills. The iCub is distributed as Open Source following the GPL/FDL licenses. The entire design is available for download from the project homepage and repository (http://www.robotcub.org). In the following, we will concentrate on the description of the hardware and software systems. The scientific objectives of the project and its philosophical underpinning are described extensively elsewhere [1].
Neural Networks | 2010
Giorgio Metta; Lorenzo Natale; Francesco Nori; Giulio Sandini; David Vernon; Luciano Fadiga; Claes von Hofsten; Kerstin Rosander; Manuel Lopes; José Santos-Victor; Alexandre Bernardino; Luis Montesano
We describe a humanoid robot platform--the iCub--which was designed to support collaborative research in cognitive development through autonomous exploration and social interaction. The motivation for this effort is the conviction that significantly greater impact can be leveraged by adopting an open systems policy for software and hardware development. This creates the need for a robust humanoid robot that offers rich perceptuo-motor capabilities with many degrees of freedom, a cognitive capacity for learning and development, a software architecture that encourages reuse & easy integration, and a support infrastructure that fosters collaboration and sharing of resources. The iCub satisfies all of these needs in the guise of an open-system platform which is freely available and which has attracted a growing community of users and developers. To date, twenty iCubs each comprising approximately 5000 mechanical and electrical parts have been delivered to several research labs in Europe and to one in the USA.
IEEE Transactions on Robotics | 2011
Alexander Schmitz; Perla Maiolino; Marco Maggiali; Lorenzo Natale; Giorgio Cannata; Giorgio Metta
Even though the sense of touch is crucial for humans, most humanoid robots lack tactile sensing. While a large number of sensing technologies exist, it is not trivial to incorporate them into a robot. We have developed a compliant “skin” for humanoids that integrates a distributed pressure sensor based on capacitive technology. The skin is modular and can be deployed on nonflat surfaces. Each module scans locally a limited number of tactile-sensing elements and sends the data through a serial bus. This is a critical advantage as it reduces the number of wires. The resulting system is compact and has been successfully integrated into three different humanoid robots. We have performed tests that show that the sensor has favorable characteristics and implemented algorithms to compensate the hysteresis and drift of the sensor. Experiments with the humanoid robot iCub prove that the sensors can be used to grasp unmodeled, fragile objects.
intelligent robots and systems | 2010
Ugo Pattacini; Francesco Nori; Lorenzo Natale; Giorgio Metta; Giulio Sandini
In this paper we describe the design of a Cartesian Controller for a generic robot manipulator. We address some of the challenges that are typically encountered in the field of humanoid robotics. The solution we propose deals with a large number of degrees of freedom, produce smooth, human-like motion and is able to compute the trajectory on-line. In this paper we support the idea that to produce significant advancements in the field of robotics it is important to compare different approaches not only at the theoretical level but also at the implementation level. For this reason we test our software on the iCub platform and compare its performance against other available solutions.
IEEE Sensors Journal | 2013
Perla Maiolino; Marco Maggiali; Giorgio Cannata; Giorgio Metta; Lorenzo Natale
Capacitive technology allows building sensors that are small, compact and have high sensitivity. For this reason it has been widely adopted in robotics. In a previous work we presented a compliant skin system based on capacitive technology consisting of triangular modules interconnected to form a system of sensors that can be deployed on non-flat surfaces. This solution has been successfully adopted to cover various humanoid robots. The main limitation of this and all the approaches based on capacitive technology is that they require to embed a deformable dielectric layer (usually made using an elastomer) covered by a conductive layer. This complicates the production process considerably, introduces hysteresis and limits the durability of the sensors due to ageing and mechanical stress. In this paper we describe a novel solution in which the dielectric is made using a thin layer of 3D fabric which is glued to conductive and protective layers using techniques adopted in the clothing industry. As such, the sensor is easier to produce and has better mechanical properties. Furthermore, the sensor proposed in this paper embeds transducers for thermal compensation of the pressure measurements. We report experimental analysis that demonstrates that the sensor has good properties in terms of sensitivity and resolution. Remarkably we show that the sensor has very low hysteresis and effectively allows compensating drifts due to temperature variations.
Autonomous Robots | 2012
Matteo Fumagalli; Serena Ivaldi; Marco Randazzo; Lorenzo Natale; Giorgio Metta; Giulio Sandini; Francesco Nori
The paper addresses the problem of measuring whole-body dynamics for a multiple-branch kinematic chain in presence of unknown external wrenches. The main result of the paper is to give a methodology for computing whole body dynamics by aligning a model of the system dynamics with the measurements coming from the available sensors. Three primary sources of information are exploited: (1) embedded force/torque sensors, (2) embedded inertial sensors, (3) distributed tactile sensors (i.e. artificial skin). In order to cope with external wrenches applied at continuously changing locations, we model the kinematic chain with a graph which dynamically adapts to the contact locations. Classical pre-order and post-order traversals of this dynamically evolving graph allow computing whole-body dynamics and estimate external wrenches. Theoretical results have been implemented in an open-source software library (iDyn) released under the iCub project. Experimental results on the iCub humanoid robot show the effectiveness of the proposed approach.
intelligent robots and systems | 2010
Alexander Schmitz; Marco Maggiali; Lorenzo Natale; Bruno Bonino; Giorgio Metta
In order to successfully perform object manipulation, humanoid robots must be equipped with tactile sensors. However, the limited space that is available in robotic fingers imposes severe design constraints. In [1] we presented a small prototype fingertip which incorporates a capacitive pressure system. This paper shows an improved version, which has been integrated on the hand of the humanoid robot iCub. The fingertip is 14.5 mm long and 13 mm wide. The capacitive pressure sensor system has 12 sensitive zones and includes the electronics to send the 12 measurements over a serial bus with only 4 wires. Each synthetic fingertip is shaped approximately like a human fingertip. Furthermore, an integral part of the capacitive sensor is soft silicone foam, and therefore the fingertip is compliant. We describe the structure of the fingertip, their integration on the humanoid robot iCub and present test results to show the characteristics of the sensor.
ieee international conference on biomedical robotics and biomechatronics | 2008
Sarah Degallier; Ludovic Righetti; Lorenzo Natale; Francesco Nori; Giorgio Metta; Auke Jan Ijspeert
Movement generation in humans appears to be processed through a three-layered architecture, where each layer corresponds to a different level of abstraction in the representation of the movement. In this article, we will present an architecture reflecting this organization and based on a modular approach to human movement generation. We will show that our architecture is well suited for the online generation and modulation of motor behaviors, but also for switching between motor behaviors. This will be illustrated respectively through an interactive drumming task and through switching between reaching and crawling.
Journal of Field Robotics | 2017
Nikos G. Tsagarakis; Darwin G. Caldwell; Francesca Negrello; Wooseok Choi; Lorenzo Baccelliere; V.G. Loc; J. Noorden; Luca Muratore; Alessio Margan; Alberto Cardellino; Lorenzo Natale; E. Mingo Hoffman; Houman Dallali; Navvab Kashiri; Jörn Malzahn; Jinoh Lee; Przemyslaw Kryczka; Dimitrios Kanoulas; Manolo Garabini; Manuel G. Catalano; Mirko Ferrati; V. Varricchio; Lucia Pallottino; Corrado Pavan; Antonio Bicchi; Alessandro Settimi; Alessio Rocchi; Arash Ajoudani
In this work, we present WALK-MAN, a humanoid platform that has been developed to operate in realistic unstructured environment, and demonstrate new skills including powerful manipulation, robust balanced locomotion, high-strength capabilities, and physical sturdiness. To enable these capabilities, WALK-MAN design and actuation are based on the most recent advancements of series elastic actuator drives with unique performance features that differentiate the robot from previous state-of-the-art compliant actuated robots. Physical interaction performance is benefited by both active and passive adaptation, thanks to WALK-MAN actuation that combines customized high-performance modules with tuned torque/velocity curves and transmission elasticity for high-speed adaptation response and motion reactions to disturbances. WALK-MAN design also includes innovative design optimization features that consider the selection of kinematic structure and the placement of the actuators with the body structure to maximize the robot performance. Physical robustness is ensured with the integration of elastic transmission, proprioceptive sensing, and control. The WALK-MAN hardware was designed and built in 11 months, and the prototype of the robot was ready four months before DARPA Robotics Challenge (DRC) Finals. The motion generation of WALK-MAN is based on the unified motion-generation framework of whole-body locomotion and manipulation (termed loco-manipulation). WALK-MAN is able to execute simple loco-manipulation behaviors synthesized by combining different primitives defining the behavior of the center of gravity, the motion of the hands, legs, and head, the body attitude and posture, and the constrained body parts such as joint limits and contacts. The motion-generation framework including the specific motion modules and software architecture is discussed in detail. A rich perception system allows the robot to perceive and generate 3D representations of the environment as well as detect contacts and sense physical interaction force and moments. The operator station that pilots use to control the robot provides a rich pilot interface with different control modes and a number of teleoperated or semiautonomous command features. The capability of the robot and the performance of the individual motion control and perception modules were validated during the DRC in which the robot was able to demonstrate exceptional physical resilience and execute some of the tasks during the competition.