Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorenzo Sorace is active.

Publication


Featured researches published by Lorenzo Sorace.


Nature | 2010

Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets

Matteo Mannini; Francesco Pineider; Chiara Danieli; Federico Totti; Lorenzo Sorace; Philippe Sainctavit; Marie-Anne Arrio; Edwige Otero; Loïc Joly; J. C. Cezar; Andrea Cornia; Roberta Sessoli

A fundamental step towards atomic- or molecular-scale spintronic devices has recently been made by demonstrating that the spin of an individual atom deposited on a surface, or of a small paramagnetic molecule embedded in a nanojunction, can be externally controlled. An appealing next step is the extension of such a capability to the field of information storage, by taking advantage of the magnetic bistability and rich quantum behaviour of single-molecule magnets (SMMs). Recently, a proof of concept that the magnetic memory effect is retained when SMMs are chemically anchored to a metallic surface was provided. However, control of the nanoscale organization of these complex systems is required for SMMs to be integrated into molecular spintronic devices. Here we show that a preferential orientation of Fe4 complexes on a gold surface can be achieved by chemical tailoring. As a result, the most striking quantum feature of SMMs—their stepped hysteresis loop, which results from resonant quantum tunnelling of the magnetization—can be clearly detected using synchrotron-based spectroscopic techniques. With the aid of multiple theoretical approaches, we relate the angular dependence of the quantum tunnelling resonances to the adsorption geometry, and demonstrate that molecules predominantly lie with their easy axes close to the surface normal. Our findings prove that the quantum spin dynamics can be observed in SMMs chemically grafted to surfaces, and offer a tool to reveal the organization of matter at the nanoscale.


Journal of Magnetism and Magnetic Materials | 1999

The molecular approach to nanoscale magnetism

Andrea Caneschi; Dante Gatteschi; Claudio Sangregorio; Roberta Sessoli; Lorenzo Sorace; Andrea Cornia; Miguel A. Novak; Carley Paulsen; Wolfgang Wernsdorfer

Abstract Molecular clusters of paramagnetic metal ions have been widely investigated as model for magnetism at the nanoscale, especially for quantum effects like the tunneling of the magnetic moment. We present here some recent results obtained on derivatives of the well-known Mn12 cluster, especially on the half-integer spin compounds. The role of the transverse anisotropy in the dynamics of the magnetization is here elucidated through the comparison of the tunneling rate of the magnetization in two Fe8 cluster compounds, which differ only in the transverse anisotropy. Local dipolar fields and nuclear hyperfine fields have also revealed to strongly affect the relaxation in the pure tunneling regime and recent experiment has allowed to determine the intrinsic linewidth of the tunneling resonance. The transverse field dependence of the relaxation rate of Fe8 has revealed oscillations that are analog to the topological constructive–destructive interference of the spin phase (Berry phase) and we review here some very recent results. The magnetic behavior of antiferromagnetic ring-shaped clusters is also discussed for their potential interest as models for antiferromagnetic particles. Some recent results obtained by other chemists in the synthesis of large spin clusters are also reviewed.


Inorganic Chemistry | 2011

Utilizing the Adaptive Polyoxometalate [As2W19O67(H2O)]14– To Support a Polynuclear Lanthanoid-Based Single-Molecule Magnet

Chris Ritchie; Manfred Speldrich; Robert W. Gable; Lorenzo Sorace; Paul Kögerler; Colette Boskovic

Five members of a new family of polyoxometalate (POM)-ligated tetranuclear rare earth metal complexes have been synthesized and characterized. These compounds have the general formula (HDABCO)(8)H(5)Li(8)[Ln(4)As(5)W(40)O(144)(H(2)O)(10)(gly)(2)]·25H(2)O [Ln = Gd (1), Tb (2), Dy (3), Ho (4) and Y = (5), HDABCO = monoprotonated 1,4-diazabicyclooctane, gly = glycine] and were synthesized from the preformed POM precursor [As(2)W(19)O(67)(H(2)O)](14-). The structure is comprised of two {As(2)W(19)O(68)} building blocks linked by a unit containing four rare earth ions and two additional tungsten centers, with the two glycine ligands playing a key bridging role. Two crystallographically distinct rare earth ions are present in each complex, both of which possess axially compressed, approximate square antiprismatic coordination geometry. The variable-temperature magnetic susceptibility profiles for 2-4 are dominated by population/depopulation of the M(J) sublevels of the relevant ground terms, and fitting of the data has afforded the ligand field parameters in each case, from which the energies of the M(J) sublevels can be calculated. Alternating current magnetic susceptibility data have revealed the onset of slow magnetic relaxation for 3, with the energy barrier to magnetization reversal determined to be 3.9(1) K. As for other lanthanoid complexes that display slow magnetic relaxation, this energy barrier is due to the splitting of the M(J) sublevels of the Dy(3+) ions such that the ground sublevel has a relatively large |M(J)| value, thereby affording Ising-type magnetic anisotropy. This complex is thus the first POM-supported polynuclear lanthanoid-based SMM. Simulation of the W-band EPR spectrum of 1 has afforded the spin Hamiltonian parameters for this species, while the X-band EPR spectrum of 3 indicates the presence of a non-negligible fourth-order transverse component of the anisotropy, which is responsible for the small effective energy barrier observed for 3 and the absence of slow magnetic relaxation for 4.


Physical Review Letters | 2002

Origin of second-order transverse magnetic anisotropy in Mn12-acetate.

Andrea Cornia; Roberta Sessoli; Lorenzo Sorace; D. Gatteschi; A. L. Barra; Carole Daiguebonne

The symmetry breaking effects for quantum tunneling of the magnetization in Mn12-acetate, a molecular nanomagnet, represent an open problem. We present structural evidence that the disorder of the acetic acid of crystallization induces sizable distortion of the Mn(III) sites, giving rise to six different isomers. Four isomers have symmetry lower than tetragonal and a nonzero second-order transverse magnetic anisotropy, which has been evaluated using a ligand field approach. The result of the calculation leads to an improved simulation of electron paramagnetic resonance spectra and justifies the tunnel splitting distribution derived from the field sweep rate dependence of the hysteresis loops.


Angewandte Chemie | 2000

Antiferromagnetic Coupling in a Gadolinium(III) Semiquinonato Complex

Andrea Caneschi; Andrea Dei; Dante Gatteschi; Lorenzo Sorace; Kira E. Vostrikova

The strongest antiferromagnetic coupling to Gd(III) so far reported was found for the complex [Gd(Hbpz(3))(2)(dtbsq)] small middle dot2 CHCl(3) (1; Hbpz(3)=hydrotris(pyrazolyl)borate; dtbsq=3,5-di-tert-butylsemiquinonato; see structure). At 245 K the magnetic susceptibility of 1 is lower than expected for two uncorrelated spins of 7/2 and 1/2, and the lowering of chiT with increasing temperature suggests that this is due to antiferromagnetic interaction between Gd(III) and the radical.


Journal of the American Chemical Society | 2016

Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Matteo Atzori; Lorenzo Tesi; Elena Morra; Mario Chiesa; Lorenzo Sorace; Roberta Sessoli

Here we report the investigation of the magnetic relaxation and the quantum coherence of vanadyl phthalocyanine, VOPc, a multifunctional and easy-processable potential molecular spin qubit. VOPc in its pure form (1) and its crystalline dispersions in the isostructural diamagnetic host TiOPc in different stoichiometric ratios, namely VOPc:TiOPc 1:10 (2) and 1:1000 (3), were investigated via a multitechnique approach based on the combination of alternate current (AC) susceptometry, continuous wave, and pulsed electron paramagnetic resonance (EPR) spectroscopy. AC susceptibility measurements revealed a linear increase of the relaxation rate with temperature up to 20 K, as expected for a direct mechanism, but τ remains slow over a very wide range of applied static field values (up to ∼5 T). Pulsed EPR spectroscopy experiments on 3 revealed quantum coherence up to room temperature with T(m) ∼1 μs at 300 K, representing the highest value obtained to date for molecular electronic spin qubits. Rabi oscillations are observed in this nuclear spin-active environment ((1)H and (14)N nuclei) at room temperature also for 2, indicating an outstanding robustness of the quantum coherence in this molecular semiconductor exploitable in spintronic devices.


Angewandte Chemie | 2010

Soft‐X‐ray‐Induced Redox Isomerism in a Cobalt Dioxolene Complex

Giordano Poneti; Matteo Mannini; Lorenzo Sorace; Philippe Sainctavit; Marie-Anne Arrio; Edwige Otero; J. C. Cezar; Andrea Dei

Valence tautomerism (VT) defines reversible interconversions between two or more redox isomers. It is established that these interconversions can be stimulated by temperature and light irradiation. For example, the diamagnetic [Co(Me2tpa)(DBCat)]PF6·C6H5CH3 complex (1) (Me2tpa = bis(6-methyl-(2-pyridylmethyl)) (2-pyridylmethyl)amine, DBCat = 3,5-di-tert-butylcatecholato) was found to undergo a thermally induced interconversion in the solid state yielding the redox isomer characterized by the high-spin Co-semiquinonato (hs-Co-SQ) charge distribution (see Scheme 1). 3] The observed transition can be formally described as the result of an entropy-driven intramolecular electron transfer involving the donor catecholato and the cobalt(III) acceptor. At cryogenic temperatures, laser irradiation of the solid compound at 904 nm, where a ligand-tometal charge transfer (LMCT) occurs, was found by bulk magnetic measurements to induce the same process, affording the hs-Co-semiquinonato species as a metastable phase in 90% yield with a rather long lifetime (two weeks at 9 K). Soft X-ray absorption spectroscopy (XAS) is an elementsensitive synchrotron-based technique and provides a powerful tool to study the electronic and chemical structure of a specific atom and its coordination environment. It is particularly powerful in the magnetic study of 3d metal complexes. With the additional asset of very high detection sensitivity, XAS has been effectively used in the characterization of systems with multiple quasi degenerated electronic states, including very diluted and nanostructured systems. We have found that for 1 this technique not only yields this important information, but also intrinsically provides the perturbation for inducing interconversion between the two redox isomers. This is an unprecedented result and we believe it to be particularly important for the study of all the complexes exhibiting photochromism. Figure 1 shows the temperature dependence of the cobalt L3-edge X-ray absorption spectra of 1 (the L2,3 spectra are shown in Figure S1 of the Supporting Information). The spectra were obtained with a X-ray flux of 10 photons s 1 on Scheme 1. The two different electronic configurations involved in VT process.


Angewandte Chemie | 2012

Exploring the No-Man’s Land between Molecular Nanomagnets and Magnetic Nanoparticles

Dante Gatteschi; Maria Fittipaldi; Claudio Sangregorio; Lorenzo Sorace

The comparison of the structural and magnetic properties of molecular nanomagnets (MNM) and magnetic nanoparticles (MNP) can be instructive to get a deeper understanding of the magnetic behavior on the intermediate scale between molecular and bulk objects. In this respect iron oxo based clusters are particularly interesting, since they provide an increasing number of molecular systems with sizes close to that of iron oxide MNP. In this Minireview we report a survey of literature data aimed at improving our understanding of the emergence of MNP properties from MNM ones.


New Journal of Chemistry | 2003

Conformational rearrangement of 2,6-bis(1-salicyloylhydrazonoethyl)pyridine (H4daps) on complexation. Synthesis and X-ray characterisation of H4daps and its copper helicate complex [Cu(H2daps)(H2O)]2·2CH3CN

Manuel R. Bermejo; Rosa Pedrido; Ana M. González-Noya; María J. Romero; Miguel Vázquez; Lorenzo Sorace

The copper complex of 2,6-bis(1-salicyloylhydrazonoethyl)pyridine, H4daps, has been prepared by an electrochemical procedure and characterised by elemental analysis, IR, FAB mass spectroscopy, ΛM, magnetic susceptibility measurements and EPR studies. The molecular structures of the ligand H4daps (1) and its copper complex [Cu(H2daps)(H2O)]2·2CH3CN (3) have been determined by X-ray diffraction studies. The ligand shows in the solid state a syn-open conformation that allows it to act as a binucleating ligand, after a conformational change, as is shown by the study of the copper dihelicate 3. This compound contains the dianionic ligand [H2daps]2− in an anti-open conformation. The comparative study of this complex, with others previously reported, allows us to confirm that the conformational rearrangement undergone by H4daps upon complexation depends strongly on the metal nature and its stereochemical preferences.


Small | 2009

Thermal Deposition of Intact Tetrairon(III) Single‐Molecule Magnets in High‐Vacuum Conditions

Ludovica Margheriti; Matteo Mannini; Lorenzo Sorace; Lapo Gorini; Dante Gatteschi; Andrea Caneschi; D. Chiappe; Riccardo Moroni; Francesco Buatier de Mongeot; Andrea Cornia; Federica M. Piras; Agnese Magnani; Roberta Sessoli

A tetrairon(III) single-molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time-of-flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High-frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising-type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single-molecule magnet behavior.

Collaboration


Dive into the Lorenzo Sorace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Dei

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Cornia

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Laure Barra

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Wernsdorfer

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge