Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loretta M. Friedrich is active.

Publication


Featured researches published by Loretta M. Friedrich.


Journal of Food Protection | 2013

Quantifying transfer rates of Salmonella and Escherichia coli O157:H7 between fresh-cut produce and common kitchen surfaces.

Dane A. Jensen; Loretta M. Friedrich; Linda J. Harris; Michelle D. Danyluk; Donald W. Schaffner

Cross-contamination between foods and surfaces in food processing environments and home kitchens may play a significant role in foodborne disease transmission. This study quantifies the cross-contamination rates between a variety of fresh-cut produce and common kitchen surfaces (ceramic, stainless steel, glass, and plastic) using scenarios that differ by cross-contamination direction, surface type, produce type, and drying time/moisture level. A five-strain cocktail of rifampin-resistant Salmonella was used in transfer scenarios involving celery, carrot, and watermelon, and a five-strain cocktail of rifampin-resistant Escherichia coli O157:H7 was used in transfer scenarios involving lettuce. Produce or surface coupons were placed in buffer-filled filter bags and homogenized or massaged, respectively, to recover cells. The resulting solutions were serially diluted in 0.1% peptone and surface plated onto tryptic soy agar with 80 μg/ml rifampin and bismuth sulfite agar with 80 μg/ml rifampin for Salmonella or sorbitol MacConkey agar with 80 μg/ml rifampin for E. coli O157:H7. When the food contact surface was freshly inoculated, a high amount (>90%) of the inoculum was almost always transferred to the cut produce item. If the inoculated food contact surfaces were allowed to dry for 1 h, median transfer was generally >90% for carrots and watermelon but ranged from <1 to ∼70% for celery and lettuce. Freshly inoculated celery or lettuce transferred more bacteria (<2 to ∼25% of the inoculum) compared with freshly inoculated carrots or watermelon (approximately <1 to 8%). After 1 h of drying, the rate of transfer from inoculated celery, carrot, and lettuce was <0.01 to ∼5% and <1 to ∼5% for watermelon. Surface moisture and direction of transfer have the greatest influence on microbial transfer rates.


Food Microbiology | 2015

Cross contamination of Escherichia coli O157:H7 between lettuce and wash water during home-scale washing

Dane A. Jensen; Loretta M. Friedrich; Linda J. Harris; Michelle D. Danyluk; Donald W. Schaffner

Lettuce and leafy greens have been implicated in multiple foodborne disease outbreaks. This study quantifies cross contamination between lettuce pieces in a small-scale home environment. A five-strain cocktail of relevant Escherichia coli O157:H7 strains was used. Bacterial transfer between single inoculated lettuce leaf pieces to 10 non-inoculated lettuce leaf pieces that were washed in a stainless steel bowl of water for 30 s, 1 min, 2 min, and 5 min was quantified. Regardless of washing time, the wash water became contaminated with 90-99% of bacteria originally present on the inoculated lettuce leaf piece. The E. coli O157:H7 concentration on initially inoculated leaf pieces was reduced ∼ 2 log CFU. Each initially uncontaminated lettuce leaf piece had ∼ 1% of the E. coli O157:H7 from the inoculated lettuce piece transferred to it after washing, with more transfer occurring during the shortest (30 s) and longest (5 min) wash times. In all cases the log percent transfer rates were essentially normally distributed. In all scenarios, most of the E. coli O157:H7 (90-99%) transferred from the inoculated lettuce pieces to the wash water. Washing with plain tap water reduces levels of E. coli O157:H7 on the inoculated lettuce leaf pieces, but also spreads contamination to previously uncontaminated leaf pieces.


Food Microbiology | 2014

Modeling the growth of Listeria monocytogenes on cut cantaloupe, honeydew and watermelon

Michelle D. Danyluk; Loretta M. Friedrich; Donald W. Schaffner

A recent outbreak linked to whole cantaloupes underscores the importance of understanding growth kinetics of Listeria monocytogenes in cut melons at different temperatures. Whole cantaloupe, watermelon, and honeydew purchased from a local supermarket were cut into 10 ± 1 g cubes. A four-strain cocktail of L. monocytogenes from food related outbreaks was used to inoculate fruit, resulting in ~10(3) CFU/10 g. Samples were stored at 4, 10, 15, 20, or 25 °C and L. monocytogenes were enumerated at appropriate time intervals. The square root model was used to describe L. monocytogenes growth rate as a function of temperature. The model was compared to prior models for Salmonella and Escherichia coli O157:H7 growth on cut melon, as well as models for L. monocytogenes on cantaloupe and L. monocytogenes ComBase models. The current model predicts faster growth of L. monocytogenes vs. Salmonella and E. coli O157:H7 at temperatures below 20 °C, and agrees with estimates from ComBase Predictor, and a corrected published model for L. monocytogenes on cut cantaloupe. The model predicts ~4 log CFU increase following 15 days at 5 °C, and ∼1 log CFU increase following 6 days at 4 °C. The model can also be used in subsequent quantitative microbial risk assessments.


Food Microbiology | 2009

Mitigation of Alicyclobacillus spp. spores on food contact surfaces with aqueous chlorine dioxide and hypochlorite.

Loretta M. Friedrich; Renee Goodrich-Schneider; Mickey E. Parish; Michelle D. Danyluk

The prevalence of Alicyclobacillus spp. and other spore-forming spoilage organisms in food handling and processing environments presents a sanitation challenge to manufacturers of products such as juices and beverages. The objectives of this study were to determine the efficacy of chlorine dioxide and sodium hypochlorite in killing Alicyclobacillus spores in situ and to evaluate the efficacy of various chlorine dioxide and hypochlorite sanitizing regimes on Alicyclobacillus spp. spores on stainless steel, wood, and rubber conveyor material. Five or two log CFU/ml spore concentrations were left in aqueous solution or inoculated onto stainless steel, rubber, or wood coupons and challenged with sanitizer for varied time intervals. After treatment, the coupons were placed in sterile sample bags, massaged with neutralizing buffer, and enumerated on Ali agar. Surfaces were also examined before and after treatment by scanning electron microscopy to confirm destruction or removal of the spores. For both five and two log CFU/ml spore concentrations, treatments of 50 and 100 ppm of chlorine dioxide and 1000 and 2000 ppm of hypochlorite, respectively, were the most effective. Of the range of chlorine dioxide concentrations and contact time regimes evaluated for all surfaces, the most effective concentration/time regime applied was 100 ppm for 10 min. Reductions ranged from 0 to 4.5 log CFU/coupon. Chlorine dioxide was least effective when applied to wood. Hypochlorite was not efficient at eliminating Alicyclobacillus spores from any of the food contact surfaces at any time and concentration combinations tested. Chlorine dioxide is an alternative treatment to kill spores of Alicyclobacillus spp. in the processing environment.


Journal of Food Protection | 2015

Survival of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes on raw peanut and pecan kernels stored at -24, 4, and 22°C.

Pardeepinder K. Brar; Lisseth Proano; Loretta M. Friedrich; Linda J. Harris; Michelle D. Danyluk

Cocktails of lawn-collected cells were used to determine the survival of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes on the surface of raw peanut and pecan kernels. Kernels were inoculated with mixtures of four to five strains at 3 or 6 log CFU/g, dried at room temperature, and then stored at -24 ± 1, 4 ± 2, and 22 ± 1°C for 28 or 365 days. In most cases, rates of decline of the pathogens did not differ significantly between the two inoculum concentrations in the 28-day study. At 6 log CFU/g, populations of all pathogens were reduced by 0.5 to 1.6 log CFU/g during an initial 3-day drying period on both peanuts and pecans. The moisture content of peanuts and pecans remained stable at -24 ± 1 and 22 ± 1°C; at 4 ± 2°C, the moisture content increased from 3.8 to 5.6% on peanuts and from 2.6 to 3% on pecans over 365 days. Pathogen populations were stable on pecans stored under frozen and refrigerated conditions, except for L. monocytogenes, which declined at a rate of 0.03 log CFU/g/30 days at 4 ± 2°C. Salmonella populations were stable on peanuts stored at -24 ± 1 and 4 ± 2°C, but E. coli O157:H7 and L. monocytogenes declined at rates of 0.03 to 0.12 log CFU/g/30 days. At 22 ± 1°C, Salmonella, E. coli O157:H7, and L. monocytogenes declined at a rate of 0.22, 0.37, and 0.59 log CFU/g/30 days, respectively, on peanuts, and at 0.15, 0.34, and 1.17 log CFU/g/30 days, respectively, on pecans. Salmonella counts were above the limit of detection (0.30 log CFU/g) throughout the study. In most cases during storage, counts obtained from pecans were higher than from peanuts.


Journal of Food Protection | 2013

Development and Validation of a Mathematical Model for Growth of Pathogens in Cut Melons

Di Li; Loretta M. Friedrich; Michelle D. Danyluk; Linda J. Harris; Donald W. Schaffner

Many outbreaks of foodborne illness associated with the consumption of fresh-cut melons have been reported. The objective of our research was to develop a mathematical model that predicts the growth rate of Salmonella on fresh-cut cantaloupe over a range of storage temperatures and to validate that model by using Salmonella and Escherichia coli O157:H7 on cantaloupe, honeydew, and watermelon, using both new data and data from the published studies. The growth of Salmonella on honeydew and watermelon and E. coli O157:H7 on cantaloupe, honeydew, and watermelon was monitored at temperatures of 4 to 25°C. The Ratkowsky (or square-root model) was used to describe Salmonella growth on cantaloupe as a function of storage temperature. Our results show that the levels of Salmonella on fresh-cut cantaloupe with an initial load of 3 log CFU/g can reach over 7 log CFU/g at 25°C within 24 h. No growth was observed at 4°C. A linear correlation was observed between the square root of Salmonella growth rate and temperature, such that √growth rate = 0.026 × (T - 5.613), R(2) = 0.9779. The model was generally suitable for predicting the growth of both Salmonella and E. coli O157:H7 on cantaloupe, honeydew, and watermelon, for both new data and data from the published literature. When compared with existing models for growth of Salmonella, the new model predicts a theoretic minimum growth temperature similar to the ComBase Predictive Models and Pathogen Modeling Program models but lower than other food-specific models. The ComBase Prediction Models results are very similar to the model developed in this study. Our research confirms that Salmonella can grow quickly and reach high concentrations when cut cantaloupe is stored at ambient temperatures, without visual signs of spoilage. Our model provides a fast and cost-effective method to estimate the effects of storage temperature on fresh-cut melon safety and could also be used in subsequent quantitative microbial risk assessments.


Journal of Food Protection | 2002

Utilization of fluorogenic assay for rapid detection of Escherichia coli in acidic fruit juice

Steven Pao; Craig L. Davis; Loretta M. Friedrich; Mickey E. Parish

This study was undertaken to investigate interference by acids commonly found in fruit juice in Escherichia coli assays involving the use of 4-methylumbelliferyl-beta-D-glucuronide (MUG) as a fluorogenic substrate for enzyme reaction. Fluorescence intensity was negatively correlated (P < 0.001) with the volume of fresh citrus juice tested by the lauryl tryptose broth (LST)-MUG assay, and the permissible sample sizes were limited to 0.3 and 0.5 ml for fresh citrus juices with pHs of 3.3 and 3.9, respectively. In addition, false-negative results were visually observed under UV light when the E*Colite assay was used to test large volumes (5 to 10 ml per test) of fresh citrus juice or when the test broth used for the LST-MUG assay was supplemented with citric, malic, or tartaric acid at 2 to 4 g/liter. These results suggest that the size and pH of acidic samples should be controlled in MUG-based fluorogenic assays. The inhibitory effect on fluorescence was due to high acidity, which reduces fluorescence from 4-methylumbelliferone. Buffering improved the assays. When sodium bicarbonate was incorporated in the enrichment broth at 10 g/liter, the permissible sample sizes for fresh grapefruit juice (pH 3.1) increased from 0.3 to 1 ml for the LST-MUG (with 9.9 ml of broth) assay and from 3 to 10 ml for the E*Colite (with 99 ml of broth) assay.


Journal of Food Protection | 2012

Growth of Clostridium perfringens during Cooling of Refried Beans

Juan M. Cevallos-Cevallos; E. Deann Akins; Loretta M. Friedrich; Michelle D. Danyluk; Amarat Simonne

Outbreaks of Clostridium perfringens have been associated with dishes containing refried beans from food service establishments. However, growth of C. perfringens in refried beans has not been investigated, and predictive models have not been validated in this food matrix. We investigated the growth of C. perfringens during the cooling of refried beans. Refried beans (pinto and black, with and without salt added) were inoculated with 3 log CFU/g C. perfringens spores and incubated isothermally at 12, 23, 30, 35, 40, 45, and 50°C. The levels of C. perfringens were monitored 3, 5, 8, and 10 h after inoculation, and then fitted to the Baranyi primary model and the Rosso secondary model prior to solving the Baranyi differential equation. The final model was validated by dynamic cooling experiments carried out in stockpots, thus mimicking the worst possible food service conditions. All refried beans samples supported the growth of C. perfringens, and all models fit the data with pseudo-R(2) values of 0.95 or greater and mean square errors of 0.3 or lower. The estimated maximum specific growth rates were generally higher in pinto beans, with or without salt added (2.64 and 1.95 h(-1), respectively), when compared with black beans, with or without salt added (1.78 and 1.61 h(-1), respectively). After 10 h of incubation, maximum populations of C. perfringens were significantly higher in samples with no salt added (7.9 log CFU/g for both pinto and black beans) than in samples with salt added (7.3 and 7.2 log CFU/g for pinto and black beans, respectively). The dynamic model predicted the growth of C. perfringens during cooling, with an average root mean squared error of 0.44. The use of large stockpots to cool refried beans led to an observed 1.2-log increase (1.5-log increase predicted by model) in levels of C. perfringens during cooling. The use of shallower pans for cooling is recommended, because they cool faster, therefore limiting the growth of C. perfringens.


Journal of Food Protection | 2010

Natural-light labeling of tomatoes does not facilitate growth or penetration of Salmonella into the fruit.

Michelle D. Danyluk; Lenin O. Interiano Villeda; Loretta M. Friedrich; Keith R. Schneider; Edgardo Etxeberria

The survival-growth capacity of Salmonella populations on tomato epidermis labeled by a natural-light labeling system was investigated after persistent fears of such marks serving as possible entryways for the pathogenic organisms, alone and in the presence of Pectobacterium carotovorum subsp. carotovorum, a soft-rot organism. Different treatments involving natural-light labeling, fruit waxing, and a five-strain cocktail of Salmonella were applied to mature green tomato surfaces in different sequences prior to storage at 4, 12, or 25°C. Fruit was sampled every 3 days, and Salmonella was enumerated from all treatments and unlabeled fruit, which served as controls. There were no significant differences between treatments or between treatments and controls throughout. The results indicate that the cuticle and epidermal interruptions caused by natural-light labeling do not facilitate the penetration and colonization of the tomato pericarp. In a separate set of experiments, the capacity of Salmonella to penetrate tomato in the presence of a potential synergism with P. carotovorum subsp. carotovorum was investigated. The addition of P. carotovorum at higher, lower, or equal population densities to Salmonella did not significantly alter the behavior of Salmonella on tomatoes stored at 25°C, regardless of natural-light labeling. The inability of P. carotovorum and Salmonella to colonize natural-light-etched surfaces of tomato fruit indicates that the use of this technology does not adversely compromise the surface of tomatoes.


Journal of Food Protection | 2016

Influence of Temperature Differential between Tomatoes and Postharvest Water on Salmonella Internalization

Ashley N. Turner; Loretta M. Friedrich; Michelle D. Danyluk

Salmonella bacteria may internalize into tomato pulp when warm tomatoes from the field are submerged into colder water. Several washing steps may follow the initial washing and packing of tomatoes at the packinghouses; the potential for internalization into tomatoes in subsequent washing steps when tomatoes have a cooler pulp temperature is unknown. Our objective was to evaluate Salmonella internalization into mature green and red tomatoes with ambient (21°C) and refrigeration (4°C) pulp temperatures when they were submerged into water at various temperature differentials, simulating repacking and fresh-cut operations. Red (4°C and 21°C) and mature green (21°C) tomatoes were submerged (6 cm) into a six-strain Salmonella cocktail (6 log CFU/ml) and maintained at ±5 and 0°C temperature differentials for varying time intervals, ranging from 30 s to 5 min. Following submersion, tomatoes were surface sterilized using 70% ethanol, the stem abscission zone and blossom end epidermis were removed, and cores were recovered, separated into three segments, and analyzed. Salmonella populations in the segments were enumerated by most probable number (MPN). The effects of temperature differential and maturity on Salmonella populations were analyzed; results were considered significant at a P value of ≥0.5. Internalized populations were not significantly different (P ≥0.5) across temperature differentials. Salmonella internalization was seen in tomatoes under all treatment conditions and was highest in the segment immediately below the stem abscission zone. However, populations were low (typically >1 log MPN per segment) and varied greatly across temperature differentials. This suggests that the temperature differential between tomatoes and water beyond the initial packinghouse may be less important than submersion time in Salmonella internalization.

Collaboration


Dive into the Loretta M. Friedrich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig L. Davis

Florida Department of Citrus

View shared research outputs
Top Co-Authors

Avatar

Di Li

Rutgers University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge