Lori A. Kennington
University of Massachusetts Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lori A. Kennington.
PLOS Genetics | 2005
Dianne S. Schwarz; Hongliu Ding; Lori A. Kennington; Jessica T Moore; Janell M. Schelter; Julja Burchard; Peter S. Linsley; Neil Aronin; Zuoshang Xu; Phillip D. Zamore
Small interfering RNAs (siRNAs), the guides that direct RNA interference (RNAi), provide a powerful tool to reduce the expression of a single gene in human cells. Ideally, dominant, gain-of-function human diseases could be treated using siRNAs that specifically silence the mutant disease allele, while leaving expression of the wild-type allele unperturbed. Previous reports suggest that siRNAs can be designed with single nucleotide specificity, but no rational basis for the design of siRNAs with single nucleotide discrimination has been proposed. We systematically identified siRNAs that discriminate between the wild-type and mutant alleles of two disease genes: the human Cu, Zn superoxide dismutase (SOD1) gene, which contributes to the progression of hereditary amyotrophic lateral sclerosis through the gain of a toxic property, and the huntingtin (HTT) gene, which causes Huntington disease when its CAG-repeat region expands beyond approximately 35 repeats. Using cell-free RNAi reactions in Drosophila embryo lysate and reporter assays and microarray analysis of off-target effects in cultured human cells, we identified positions within an siRNA that are most sensitive to mismatches. We also show that purine:purine mismatches imbue an siRNA with greater discriminatory power than other types of base mismatches. siRNAs in which either a G:U wobble or a mismatch is located in the “seed” sequence, the specialized siRNA guide region responsible for target binding, displayed lower levels of selectivity than those in which the mismatch was located 3′ to the seed; this region of an siRNA is critical for target cleavage but not siRNA binding. Our data suggest that siRNAs can be designed to discriminate between the wild-type and mutant alleles of many genes that differ by just a single nucleotide.
Current Biology | 2009
Edith L. Pfister; Lori A. Kennington; Juerg R. Straubhaar; Sujata Wagh; Wanzhou Liu; Marian DiFiglia; Bernhard Landwehrmeyer; Jean Paul Vonsattel; Phillip D. Zamore; Neil Aronin
Among dominant neurodegenerative disorders, Huntingtons disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1-9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11-13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15-19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD.
The Journal of Urology | 1996
Cheryl R. Scheid; Hari Koul; W. Adam Hill; Judy Luber-Narod; Julie A. Jonassen; Thomas W. Honeyman; Lori A. Kennington; Rakhi Kohli; John Hodapp; Philip John Ayvazian; Mani Menon
PURPOSE The present studies assessed the possibility that high concentrations of oxalate may be toxic to renal epithelial cells. MATERIALS AND METHODS Subconfluent cultures of LLC-PK1 cells were exposed to oxalate, and the effects on cell morphology, membrane permeability to vital dyes, DNA integrity and cell density were assessed. RESULTS Oxalate exposure produced time- and concentration-dependent changes in the light microscopic appearance of LLC-PK1 cells with higher concentrations ( > 140 microM.) inducing marked cytosolic vacuolization and nuclear pyknosis. Exposure to oxalate also increased membrane permeability to vital dyes, promoted DNA fragmentation and, at high concentrations (350 microM. free oxalate), induced a net loss of LLC-PK1 cells. CONCLUSIONS Since high concentrations of oxalate can be toxic to renal epithelial cells, hyperoxaluria may contribute to several forms of renal disease including both calcium stone disease and end-stage renal disease.
Nature Methods | 2008
Wanzhao Liu; Lori A. Kennington; H. Diana Rosas; Steven M. Hersch; Jang-Ho Cha; Phillip D. Zamore; Neil Aronin
Allele-specific silencing using small interfering RNAs targeting heterozygous single-nucleotide polymorphisms (SNPs) is a promising therapy for human trinucleotide repeat diseases such as Huntingtons disease. Linking SNP identities to the two HTT alleles, normal and disease-causing, is a prerequisite for allele-specific RNA interference. Here we describe a method, SNP linkage by circularization (SLiC), to identify linkage between CAG repeat length and nucleotide identity of heterozygous SNPs using Huntingtons disease patient peripheral blood samples.
Nucleic Acid Therapeutics | 2016
Andrew H. Coles; Maire F. Osborn; Julia F. Alterman; Anton A. Turanov; Bruno M.D.C. Godinho; Lori A. Kennington; Kathryn Chase; Neil Aronin; Anastasia Khvorova
Preclinical development of RNA interference (RNAi)-based therapeutics requires a rapid, accurate, and robust method of simultaneously quantifying mRNA knockdown in hundreds of samples. The most well-established method to achieve this is quantitative real-time polymerase chain reaction (qRT-PCR), a labor-intensive methodology that requires sample purification, which increases the potential to introduce additional bias. Here, we describe that the QuantiGene(®) branched DNA (bDNA) assay linked to a 96-well Qiagen TissueLyser II is a quick and reproducible alternative to qRT-PCR for quantitative analysis of mRNA expression in vivo directly from tissue biopsies. The bDNA assay is a high-throughput, plate-based, luminescence technique, capable of directly measuring mRNA levels from tissue lysates derived from various biological samples. We have performed a systematic evaluation of this technique for in vivo detection of RNAi-based silencing. We show that similar quality data is obtained from purified RNA and tissue lysates. In general, we observe low intra- and inter-animal variability (around 10% for control samples), and high intermediate precision. This allows minimization of sample size for evaluation of oligonucleotide efficacy in vivo.
Journal of Huntington's disease | 2013
Wanzhao Liu; Joanna P Chaurette; Edith L. Pfister; Lori A. Kennington; Kathryn Chase; Jocelyn Y. Bullock; Jean Paul Vonsattel; Richard L.M. Faull; Douglas Macdonald; Marian DiFiglia; Phillip D. Zamore; Neil Aronin
BACKGROUND Huntingtons disease is caused by expansion of CAG trinucleotide repeats in the first exon of the huntingtin gene, which is essential for both development and neurogenesis. Huntingtons disease is autosomal dominant. The normal allele contains 6 to 35 CAG triplets (average, 18) and the mutant, disease-causing allele contains >36 CAG triplets (average, 42). OBJECTIVE We examined 279 postmortem brain samples, including 148 HD and 131 non-HD controls. A total of 108 samples from 87 HD patients that are heterozygous at SNP rs362307, with a normal allele (18 to 27 CAG repeats) and a mutant allele (39 to 73 CAG repeats) were used to measure relative abundance of mutant and wild-type huntingtin mRNA. METHODS We used allele-specific, quantitative RT-PCR based on SNP heterozygosity to estimate the relative amount of mutant versus normal huntingtin mRNA in postmortem brain samples from patients with Huntingtons disease. RESULTS In the cortex and striatum, the amount of mRNA from the mutant allele exceeds that from the normal allele in 75% of patients. In the cerebellum, no significant difference between the two alleles was evident. Brain tissues from non-HD controls show no significant difference between two alleles of huntingtin mRNAs. Allelic differences were more pronounced at early neuropathological grades (grades 1 and 2) than at late grades (grades 3 and 4). CONCLUSION More mutant HTT than normal could arise from increased transcription of mutant HTT allele, or decreased clearance of mutant HTT mRNA, or both. An implication is that equimolar silencing of both alleles would increase the mutant HTT to normal HTT ratio.
Human Gene Therapy | 2017
Edith L. Pfister; Natalie Dinardo; Erica Mondo; Florie Borel; Faith Conroy; Cara K. Fraser; Gwladys Gernoux; Xin Han; Danjing Hu; Emily S. Johnson; Lori A. Kennington; Pengpeng Liu; Suzanne J. Reid; Ellen Sapp; Petr Vodicka; Tim Kuchel; A. Jennifer Morton; David Howland; Richard P. Moser; Miguel Sena-Esteves; Guangping Gao; Christian Mueller; Marian DiFiglia; Neil Aronin
Huntingtons disease (HD) is a fatal neurodegenerative disease caused by a genetic expansion of the CAG repeat region in the huntingtin (HTT) gene. Studies in HD mouse models have shown that artificial miRNAs can reduce mutant HTT, but evidence for their effectiveness and safety in larger animals is lacking. HD transgenic sheep express the full-length human HTT with 73 CAG repeats. AAV9 was used to deliver unilaterally to HD sheep striatum an artificial miRNA targeting exon 48 of the human HTT mRNA under control of two alternative promoters: U6 or CβA. The treatment reduced human mutant (m) HTT mRNA and protein 50-80% in the striatum at 1 and 6 months post injection. Silencing was detectable in both the caudate and putamen. Levels of endogenous sheep HTT protein were not affected. There was no significant loss of neurons labeled by DARPP32 or NeuN at 6 months after treatment, and Iba1-positive microglia were detected at control levels. It is concluded that safe and effective silencing of human mHTT protein can be achieved and sustained in a large-animal brain by direct delivery of an AAV carrying an artificial miRNA.
Scientific Reports | 2017
James R. Miller; Edith L. Pfister; Wanzhao Liu; Ralph Andre; Ulrike Träger; Lori A. Kennington; Kimberly Lo; Sipke Dijkstra; Douglas A. MacDonald; Gary R. Ostroff; Neil Aronin; Sarah J. Tabrizi
Post-transcriptional gene silencing is a promising therapy for the monogenic, autosomal dominant, Huntington’s disease (HD). However, wild-type huntingtin (HTT) has important cellular functions, so the ideal strategy would selectively lower mutant HTT while sparing wild-type. HD patients were genotyped for heterozygosity at three SNP sites, before phasing each SNP allele to wild-type or mutant HTT. Primary ex vivo myeloid cells were isolated from heterozygous patients and transfected with SNP-targeted siRNA, using glucan particles taken up by phagocytosis. Highly selective mRNA knockdown was achieved when targeting each allele of rs362331 in exon 50 of the HTT transcript; this selectivity was also present on protein studies. However, similar selectivity was not observed when targeting rs362273 or rs362307. Furthermore, HD myeloid cells are hyper-reactive compared to control. Allele-selective suppression of either wild-type or mutant HTT produced a significant, equivalent reduction in the cytokine response of HD myeloid cells to LPS, suggesting that wild-type HTT has a novel immune function. We demonstrate a sequential therapeutic process comprising genotyping and mutant HTT-linkage of SNPs, followed by personalised allele-selective suppression in a small patient cohort. We further show that allele-selectivity in ex vivo patient cells is highly SNP-dependent, with implications for clinical trial target selection.
Molecular therapy. Nucleic acids | 2017
Edith L. Pfister; Kathryn Chase; Huaming Sun; Lori A. Kennington; Faith Conroy; Emily S. Johnson; Rachael Miller; Florie Borel; Neil Aronin; Christian Mueller
Huntington’s disease is a devastating, incurable neurodegenerative disease affecting up to 12 per 100,000 patients worldwide. The disease is caused by a mutation in the Huntingtin (Htt) gene. There is interest in reducing mutant Huntingtin by targeting it at the mRNA level, but the maximum tolerable dose and long-term effects of such a treatment are unknown. Using a self-complementary AAV9 vector, we delivered a mir-155-based artificial miRNA under the control of the chicken β-actin or human U6 promoter. In mouse brain, the artificial miRNA reduced the human huntingtin mRNA by 50%. The U6, but not the CβA promoter, produced the artificial miRNA at supraphysiologic levels. Embedding the antisense strand in a U6-mir-30 scaffold reduced expression of the antisense strand but increased the sense strand. In mice treated with scAAV9-U6-mir-155-HTT or scAAV9-CβA-mir-155-HTT, activated microglia were present around the injection site 1 month post-injection. Six months post-injection, mice treated with scAAV9-CβA-mir-155-HTT were indistinguishable from controls. Those that received scAAV9-U6-mir-155-HTT showed behavioral abnormalities and striatal damage. In conclusion, miRNA backbone and promoter can be used together to modulate expression levels and strand selection of artificial miRNAs, and in brain, the CβA promoter can provide an effective and safe dose of a human huntingtin miRNA.
Journal of Huntington's disease | 2016
Wanzhao Liu; Edith L. Pfister; Lori A. Kennington; Kathryn Chase; Christian Mueller; Marian DiFiglia; Neil Aronin
BACKGROUND Silencing mutant huntingtin mRNA by RNA interference (RNAi) is a therapeutic strategy for Huntingtons disease. RNAi induces specific endonucleolytic cleavage of the target HTT mRNA, followed by exonucleolytic processing of the cleaved mRNA fragments. OBJECTIVES We investigated the clearance of huntingtin mRNA cleavage products following RNAi, to find if particular huntingtin mRNA sequences persist. We especially wanted to find out if the expanded CAG increased production of a toxic mRNA species by impeding degradation of human mutant huntingtin exon 1 mRNA. METHODS Mice expressing the human mutant HTT transgene with 128 CAG repeats (YAC128 mice) were injected in the striatum with self-complementary AAV9 vectors carrying a miRNA targeting exon 48 of huntingtin mRNA (scAAV-U6-miRNA-HTT-GFP). Transgenic huntingtin mRNA levels were measured in striatal lysates after two weeks. For qPCR, we used species specific primer-probe combinations that together spanned 6 positions along the open reading frame and untranslated regions of the human huntingtin mRNA. Knockdown was also measured in the liver following tail vein injection. RESULTS Two weeks after intrastriatal administration of scAAV9-U6-miRNA-HTT-GFP, we measured transgenic mutant huntingtin in striatum using probes targeting six different sites along the huntingtin mRNA. Real time PCR showed a reduction of 29% to 36% in human HTT. There was no significant difference in knockdown measured at any of the six sites, including exon 1. In liver, we observed a more pronounced HTT mRNA knockdown of 70% to 76% relative to the untreated mice, and there were also no significant differences among sites. CONCLUSIONS Our results demonstrate that degradation is equally distributed across the human mutant huntingtin mRNA following RNAi-induced cleavage.