Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lori A. White is active.

Publication


Featured researches published by Lori A. White.


Aquatic Toxicology | 2010

Embryonic exposure to tetrabromobisphenol A and its metabolites, bisphenol A and tetrabromobisphenol A dimethyl ether disrupts normal zebrafish (Danio rerio) development and matrix metalloproteinase expression.

Jessica M. McCormick; Michael S. Paiva; Max M. Häggblom; Keith R. Cooper; Lori A. White

Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant that is persistent in the environment and detected in human serum and breast milk. TBBPA is microbiologically transformed in anaerobic environments to bisphenol A (BPA) and in aerobic environments to TBBPA dimethyl ether (TBBPA DME). Despite the detection of TBBPA DME in the environment, the resulting toxicity is not known. The relative toxicity of TBBPA, BPA and TBBPA DME was determined using embryonic exposure of zebrafish, with BPA and TBBPA DME exhibiting lower potency than TBBPA. TBBPA exposure resulted in 100% mortality at 3 (1.6mg/L) and 1.5μM (0.8mg/L), whereas BPA and TBBPA DME did not result in significant embryonic mortality in comparison to controls. While all three caused edema and hemorrhage, only TBBPA specifically caused decreased heart rate, edema of the trunk, and tail malformations. Matrix metalloproteinase (MMP) expression was measured due to the role of these enzymes in the remodeling of the extracellular matrix during tissue morphogenesis, wound healing and cell migration. MMP-2, -9 and -13 expression increased (2-8-fold) after TBBPA exposure followed by an increase in the degradation of collagen I and gelatin. TBBPA DME exposure resulted in only a slight increase (less than 2-fold) in MMP expression and did not significantly increase enzymatic activity. These data suggest that TBBPA is more potent than BPA or TBBPA DME and indicate that the trunk and tail phenotypes seen after TBBPA exposure could be due in part to alteration of proper MMP expression and activity.


Toxicological Sciences | 2010

Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos

Amy DeMicco; Keith R. Cooper; Jason R. Richardson; Lori A. White

Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.


Toxicological Sciences | 2008

Glucocorticoids Alter Craniofacial Development and Increase Expression and Activity of Matrix Metalloproteinases in Developing Zebrafish (Danio rerio)

Jedd M. Hillegass; Caren M. Villano; Keith R. Cooper; Lori A. White

Teratogenic effects are observed following long-term administration of glucocorticoids, although short-term glucocorticoid therapy is still utilized to reduce fetal mortality, respiratory distress syndrome, and intraventricular hemorrhage in preterm infants. However, the mechanism of glucocorticoid-induced teratogenicity is unknown. We hypothesize that glucocorticoid-induced teratogenesis is mediated through the glucocorticoid receptor (GR) and results from altering the expression and activity of the matrix metalloproteinases (MMPs). During embryogenesis, degradation of the extracellular matrix to allow for proper cellular migration and tissue organization is a tightly regulated process requiring appropriate temporal and spatial expression and activity of the MMPs. Studies have demonstrated that MMP gene expression can be either inhibited or induced by glucocorticoids in a variety of model systems. Using the zebrafish (Danio rerio) as a model of development, the data presented here demonstrate that embryonic exposure to the glucocorticoids dexamethasone or hydrocortisone increased expression of two gelatinases, MMP-2 ( approximately 1.5-fold) and MMP-9 (7.6- to 9.0-fold), at 72 h postfertilization (hpf). Further, gelatinase activity was increased approximately threefold at 72 hpf following glucocorticoid treatment, and changes in craniofacial morphogenesis were also observed. Cotreatment of zebrafish embryos with each glucocorticoid and the GR antagonist RU486 resulted in attenuation of glucocorticoid-induced increases in MMP expression (52-84% decrease) and activity (41-94% decrease). Furthermore, the abnormal craniofacial phenotype observed following glucocorticoid exposure was less severe following RU486 cotreatment. These studies demonstrate that in the embryonic zebrafish, dexamethasone, and hydrocortisone alter expression and activity of MMP-2 and -9, and suggest that these increases may be mediated through the GR.


Biochemical Pharmacology | 2009

The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism

Tiffany S. Kung; Kyle A. Murphy; Lori A. White

The aryl hydrocarbon receptor (AhR) is an orphan receptor in the basic helix-loop-helix PAS family of transcriptional regulators. Although the endogenous regulator of this pathway has not been identified, the AhR is known to bind and be activated by a variety of compounds ranging from environmental contaminants to flavanoids. The function of this receptor is still unclear; however, animal models indicate that the AhR is important for normal development. One hypothesis is that the AhR senses cellular stress and initiates the cellular response by altering gene expression and inhibiting cell cycle progression and that activation of the AhR by exogenous environmental chemicals results in the dysregulation of this normal function. In this review we will examine the role of the AhR in the regulation of genes and proteins involved in cell adhesion and matrix remodeling, and discuss the implications of these changes in development and disease. In addition, we will discuss evidence suggesting that the AhR pathway is responsive to changes in matrix composition as well as cell-cell and cell-matrix interactions.


Vitamins and Hormones Series | 2007

The Intersection Between the Aryl Hydrocarbon Receptor (AhR)‐ and Retinoic Acid‐Signaling Pathways

Kyle A. Murphy; Loredana Quadro; Lori A. White

Data from a variety of animal and cell culture model systems have demonstrated an interaction between the aryl hydrocarbon receptor (AhR)- and retinoic acid (RA)-signaling pathways. The AhR(1) was originally identified as the receptor for the polycyclic aromatic hydrocarbon family of environmental contaminants; however, recent data indicate that the AhR binds to a variety of endogenous and exogenous compounds, including some synthetic retinoids. In addition, activation of the AhR pathway alters the function of nuclear hormone-signaling pathways, including the estrogen, thyroid, and RA pathways. Activation of the AhR pathway through exposure to environmental compounds results in significant changes in RA synthesis, catabolism, transport, and excretion. Some effects on retinoid homeostasis mediated by the AhR pathway may result from the interactions of these two pathways at the level of activating or repressing the expression of specific genes. This chapter will review these two pathways, the evidence demonstrating a link between them, and the data indicating the molecular basis of the interactions between these two pathways.


Aquatic Toxicology | 2010

Impaired reproductive health of killifish (Fundulus heteroclitus) inhabiting Newark Bay, NJ, a chronically contaminated estuary.

Sean M. Bugel; Lori A. White; Keith R. Cooper

A battery of biomarkers were used to evaluate the reproductive health and contaminant exposure of Atlantic killifish (Fundulus heteroclitus) inhabiting the heavily industrialized Newark Bay and a reference population from Great Bay, Tuckerton, NJ. The biomarkers investigated included classical endpoints (gonad and liver histopathology, body and tissue morphometrics), hepatic mRNA expression (CYP1A and vitellogenin I), hepatic protein levels (CYP1A and vitellogenin), gonadal aromatase mRNA expression, and chemical exposure analyses (bile PAHs). Our data showed no significant differences between populations for body size and body weight. However, Newark Bay killifish exhibited molecular and morphological changes indicative of impaired reproductive health and endocrine disruption compared to the reference population. Newark Bay males had decreased gonad weight, altered testis development and decreased gonadal aromatase mRNA expression. Newark Bay females had decreased gonad weight, inhibited gonadal development, decreased hepatic vitellogenin production (mRNA and protein) and increased mRNA expression of gonadal aromatase. In addition, Newark Bay females had a significant increase in the percent of pre-vitellogenic follicles (43% at Tuckerton, 64% at Newark Bay) and a significantly decreased percent of follicles at the mid-vitellogenic and mature stages (25% mature at Tuckerton and 3% at Newark Bay). In addition to reproductive endpoints, killifish at Newark Bay exhibited high basal levels of CYP1A mRNA and protein expression which indicated exposure to aryl hydrocarbon receptor (AhR) agonists. An inverse relationship between hepatic CYP1A protein and hepatic vitellogenin mRNA expression was established suggesting a possible link between AhR agonist exposure and vitellogenesis. Killifish in the NY-NJ Harbor Estuary are exposed to a number of chemicals that can interact with the AhR pathway and stimulate enzymatic activity along with chemicals that can modify reproductive success in this indigenous species. Similar effects on the reproductive development in less resilient species may limit their ability to repopulate the NY-NJ Harbor Estuary and similarly contaminated water systems.


Biological Chemistry | 2006

The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease.

Jedd M. Hillegass; Kyle A. Murphy; Caren M. Villano; Lori A. White

Abstract The aryl hydrocarbon receptor (AhR) was identified as the receptor for polycyclic aromatic hydrocarbons and related compounds. However, novel data indicate that the AhR binds a variety of unrelated endogenous and exogenous compounds. Although AhR knockout mice demonstrate that this receptor has a role in normal development and physiology, the function of this receptor is still unclear. Recent evidence suggests that AhR signaling also alters the expression of genes involved in matrix metabolism, specifically the matrix metalloproteinases (MMPs). MMP expression and activity is critical to normal physiological processes that require tissue remodeling, as well as in mediating the progression of a variety of diseases. MMPs not only degrade structural proteins, but are also important mediators of cell signaling near or at the cell membrane through exposure of cryptic sites, release of growth factors, and cleavage of receptors. Therefore, AhR modulation of MMP expression and activity may be critical, not only in pathogenesis, but also in understanding the endogenous function of the AhR. In this review we will examine the data indicating a role for the AhR-signaling pathway in the regulation of matrix remodeling, and discuss potential molecular mechanisms.


Aquatic Toxicology | 2013

Inhibition of vitellogenin gene induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin is mediated by aryl hydrocarbon receptor 2 (AHR2) in zebrafish (Danio rerio).

Sean M. Bugel; Lori A. White; Keith R. Cooper

Vitellogenins are hepatically derived yolk-protein precursors required for oogenesis in all oviparous teleosts. Altered gene-regulation of vitellogenesis by environmental contaminants can have profound effects on reproductive success, and ultimately population sustainability. To better understand chemical effects on vitellogenin gene regulation, we tested the hypothesis that activation of the aryl hydrocarbon receptor 2 (AHR2) by dioxin inhibits the estrogen receptor pathway regulation of 3 vitellogenin genes (vtg1-3) in vivo, using zebrafish (Danio rerio) as a model teleost. Using an embryo-larval bioassay, embryos were either treated with 1000 pptr (parts-per-trillion, pg/mL) 17α-ethynylestradiol (EE2) alone from 6h post fertilization (hpf) to 4 days post fertilization (dpf), or pre-treated with dioxin (4-5 hpf) prior to EE2. Pre-treatment with 400 pptr 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) or 1,2,3,7,8-pentachlorodibenzo-p-dioxin inhibited the EE2 induction of vtg1, vtg2 and vtg3 by >95% (p≤0.05). In comparison, a splice-blocking AHR2 morpholino used to down-regulate ahr2 expression significantly reduced the inhibition of vtg1, vtg2 and vtg3 by 400 pptr 2,3,7,8-TCDD (20.7-27.4% rescue). These studies demonstrate that 2,3,7,8-TCDD directly inhibits the vitellogenin pathway in vivo through activation of the AHR2. This work provides evidence for AHR2 dependent cross-talk inhibition of vitellogenin genes and offers insight into anti-estrogenic reproductive effects observed in oviparous species exposed to AHR agonist contaminants.


Aquatic Toxicology | 2011

Decreased vitellogenin inducibility and 17β-estradiol levels correlated with reduced egg production in killifish (Fundulus heteroclitus) from Newark Bay, NJ

Sean M. Bugel; Lori A. White; Keith R. Cooper

Aquatic species inhabiting polluted estuaries are exposed to complex mixtures of xenobiotics which can alter normal reproduction. We previously reported that female Atlantic killifish (Fundulus heteroclitus) from the highly contaminated Newark Bay, NJ (USA) exhibited an inhibition of oocyte development due to reduced vitellogenin (egg-yolk precursor) levels. Our hypothesis was that the inhibition of oocyte development in Newark Bay killifish is due to (1) deficient levels of circulating 17β-estradiol, and (2) a decreased sensitivity of the vitellogenin pathway to physiological doses of 17β-estradiol. In the first study, adult naïve killifish from Tuckerton, NJ (reference) were caged at Tuckerton and Newark Bay. After 1 month, males caged at Newark Bay exhibited inductions of hepatic vitellogenin and estrogen receptor α, which were transient and returned to basal levels after 2 months (p≤0.05). In the second study, fecundity and 17β-estradiol levels were measured in reproductively active adult females from Tuckerton and Newark Bay. Tuckerton females produced 140 eggs per female and Newark Bay females produced 11 eggs per female. Embryos from Newark Bay had 34% greater mortality and 28% less hatch, relative to Tuckerton. In addition, embryo mass and yolk-volume of Newark Bay embryos compared to Tuckerton embryos was 16% and 25% lower, respectively. Circulating 17β-estradiol levels in Newark Bay females (0.26 ng/mL) were measured to be 8-fold lower than Tuckerton females (2.25 ng/mL). In the third study, adult killifish from both sites were dosed with 17β-estradiol to assess the sensitivity of the vitellogenin pathway. At doses of 0.01, 0.1, 1 and 10 ng/g body weight, induction levels of circulating vitellogenin in Newark Bay males were significantly inhibited by 97, 99, 98 and 44%, respectively, compared to Tuckerton males. At doses of 0.01, 0.1, 1, 10 and 100 ng/g body weight, induction levels of circulating vitellogenin in Newark Bay females were inhibited by 89, 79, 61, 40 and 30%, respectively, compared to Tuckerton females. These differences in inducibility could not be explained by altered hepatic expression of estrogen receptors α, βa or βb. Based on the caged and dose-response studies, contaminants that down-regulate vitellogenin would interfere with its ability to be used as a biomarker for xeno-estrogen exposures. These studies demonstrate that contaminants within Newark Bay exert both estrogenic and anti-estrogenic responses which results in an overtly anti-estrogenic phenotype (reduced egg production due to inhibition of vitellogenesis).


Environmental Science & Technology | 2011

Microbially mediated O-methylation of bisphenol A results in metabolites with increased toxicity to the developing zebrafish (Danio rerio) embryo.

Jessica M. McCormick; Theo Van Es; Keith R. Cooper; Lori A. White; Max M. Häggblom

Bisphenol A (BPA) is used in the manufacture of plastics, and has been identified in various environmental matrices, including human serum and breast milk. The prevalence of BPA in the environment and the potential exposure to humans underscores the need to more fully understand the fate of BPA in the environment and the resulting effects and toxicity to humans and other organisms. Here we demonstrate that Mycobacterium species, including Mycobacterium vanbaalenii strain PYR-1, are able to O-methylate BPA to its mono- and dimethyl ether derivatives (BPA MME and BPA DME, respectively). The O-methylation of BPA results in metabolites with increased toxicity as shown from differences in survival and occurrence of developmental lesions in developing zebrafish embryos exposed to BPA, BPA MME, and BPA DME. The mono- and dimethyl ether derivatives were more toxic than BPA, resulting in increased mortality at 5 (LC(50) = 0.66 and 1.2 mg L(-1)) and 28 (LC(50) = 0.38, <0.5 mg L(-1)) days post fertilization. Furthermore, exposure to either of the O-methylated metabolites resulted in an increase in the incidence of developmental lesions as compared to BPA exposure. These data illustrate a new mechanism for microbial transformation of BPA, producing metabolites warranting further study to understand their prevalence and effects in the environment.

Collaboration


Dive into the Lori A. White's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason R. Richardson

Northeast Ohio Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge