Lori Asarian
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lori Asarian.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013
Lori Asarian; Nori Geary
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Gastroenterology | 2012
Lori Asarian; Kathrin Abegg; Nori Geary; Marc Schiesser; Thomas A. Lutz; Marco Bueter
Despite the fact that ∼85% of bariatric operations are performed in women, the effects of the reproductive axis function on outcome of bariatric surgery remain to be determined. Here we developed the first published model of Roux-en-Y gastric bypass (RYGB) in female rats. We show in ovariectomized rats receiving estradiol or control treatment that (1) RYGB-induced body weight loss and (2) the satiating efficacy of endogenous glucagon-like peptide-1 and cholecystokinin satiation were significantly increased in estradiol-treated rats. These data are relevant to the care of obese women, in particular perimenopausal women, undergoing bariatric surgery.
European Journal of Neuroscience | 2014
Fiona E. Braegger; Lori Asarian; Kirsten Dahl; Thomas A. Lutz; Christina N. Boyle
Amylin reduces meal size by activating noradrenergic neurons in the area postrema (AP). Neurons in the AP also mediate the eating‐inhibitory effects of salmon calcitonin (sCT), a potent amylin agonist, but the phenotypes of the neurons mediating its effect are unknown. Here we investigated whether sCT activates similar neuronal populations to amylin, and if its anorectic properties also depend on AP function. Male rats underwent AP lesion (APX) or sham surgery. Meal patterns were analysed under ad libitum and post‐deprivation conditions. The importance of the AP in mediating the anorectic action of sCT was examined in feeding experiments of dose–response effects of sCT in APX vs. sham rats. The effect of sCT to induce Fos expression was compared between surgery groups, and relative to amylin. The phenotype of Fos‐expressing neurons in the brainstem was examined by testing for the co‐expression of dopamine beta hydroxylase (DBH) or tryptophan hydroxylase (TPH). By measuring the apposition of vesicular glutamate transporter‐2 (VGLUT2)‐positive boutons, potential glutamatergic input to amylin‐ and sCT‐activated AP neurons was compared. Similar to amylin, an intact AP was necessary for sCT to reduce eating. Further, co‐expression between Fos activation and DBH after amylin or sCT did not differ markedly, while co‐localization of Fos and TPH was minor. Approximately 95% of neurons expressing Fos and DBH after amylin or sCT treatment were closely apposed to VGLUT2‐positive boutons. Our study suggests that the hindbrain pathways engaged by amylin and sCT share many similarities, including the mediation by AP neurons.
Human Reproduction Update | 2017
Brigitte Leeners; Nori Geary; Philippe N. Tobler; Lori Asarian
BACKGROUND Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may play a major role. OBJECTIVE AND RATIONALE We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE. SEARCH METHODS Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) reproductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical translational potential rather than to provide a comprehensive review. OUTCOMES We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity, estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses womens protective AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative emotional states during the luteal phase. Pre-clinical research indicates that one mechanism for the pre-ovulatory decrease in eating is a central action of estrogens to increase the satiating potency of the gastrointestinal hormone cholecystokinin. Another mechanism involves a decrease in the preference for sweet foods during the follicular phase. Genetic defects in brain α-melanocycte-stimulating hormone-melanocortin receptor (melanocortin 4 receptor, MC4R) signaling lead to a syndrome of overeating and obesity that is particularly pronounced in women and in female animals. The syndrome appears around puberty in mice with genetic deletions of MC4R, suggesting a role of ovarian hormones. Emerging functional brain-imaging data indicates that fluctuations in ovarian hormones affect eating by influencing striatal dopaminergic processing of flavor hedonics and lateral prefrontal cortex processing of cognitive inhibitory controls of eating. There is a dearth of research on the neuroendocrine control of eating after menopause. There is also comparatively little research on the effects of ovarian hormones on EE, although changes in ovarian hormone levels during the menstrual cycle do affect resting EE. WIDER IMPLICATIONS The markedly greater obesity burden in women makes understanding the diverse effects of ovarian hormones on eating, EE and body adiposity urgent research challenges. A variety of research modalities can be used to investigate these effects in women, and most of the mechanisms reviewed are accessible in animal models. Therefore, human and translational research on the roles of ovarian hormones in womens obesity and its causes should be intensified to gain further mechanistic insights that may ultimately be translated into novel anti-obesity therapies and thereby improve womens health.
Hormone Molecular Biology and Clinical Investigation | 2014
Lori Asarian; Thomas Bächler
Abstract Eating is a simple behavior with complex functions. The unconscious neuroendocrine process that stops eating and brings a meal to its end is called satiation. Energy homeostasis is mediated accomplished through the control of meal size via satiation. It involves neural integrations of phasic negative-feedback signals related to ingested food and tonic signals, such as those related to adipose tissue mass. Energy homeostasis is accomplished through adjustments in meal size brought about by changes in these satiation signals. The best understood meal-derived satiation signals arise from gastrointestinal nutrient sensing. Gastrointestinal hormones secreted during the meal, including cholecystokinin, glucagon-like peptide 1, and PYY, mediate most of these. Other physiological signals arise from activation of metabolic-sensing neurons, mainly in the hypothalamus and caudal brainstem. We review both classes of satiation signal and their integration in the brain, including their processing by melanocortin, neuropeptide Y/agouti-related peptide, serotonin, noradrenaline, and oxytocin neurons. Our review is not comprehensive; rather, we discuss only what we consider the best-understood mechanisms of satiation, with a special focus on normally operating physiological mechanisms.
International Journal of Eating Disorders | 2017
Maria Vittoria Micioni Di Bonaventura; Thomas A. Lutz; Adele Romano; Mariangela Pucci; Nori Geary; Lori Asarian; Carlo Cifani
Because binge eating and emotional eating vary through the menstrual cycle in human females, we investigated cyclic changes in binge-like eating in female rats and their control by estrogens. Binge-like eating was elicited by three cycles of 4 days of food restriction and 4 days of free feeding followed by a single frustrative nonreward-stress episode (15 min visual and olfactory exposure to a familiar palatable food) immediately before presentation of the palatable food. Intact rats showed binge-like eating during the diestrous and proestrous phases of the ovarian cycle, but not during the estrous (periovulatory) phase. Ovariectomized (OVX) rats not treated with estradiol (E2) displayed binge-like eating, whereas E2-treated OVX rats did not. The procedure did not increase signs of anxiety in an open-field test. OVX rats not treated with E2 that were subjected to food restriction and sacrificed immediately after frustrative nonreward had increased numbers of cells expressing phosphorylated extracellular signal-regulated kinases (ERK) in the central nucleus of the amygdala (CeA), paraventricular nucleus of hypothalamus (PVN), and dorsal and ventral bed nuclei of the stria terminalis (BNST) compared with nonrestricted or E2-treated rats. These data suggest that this female rat model is appropriate for mechanistic studies of some aspects of menstrual-cycle effects on emotional and binge eating in human females, that anxiety is not a sufficient cause of binge-like eating, and that the PVN, CeA, and BNST may contribute to information processing underlying binge-like eating.
Appetite | 2018
Thomas Bächler; Nori Geary; Marco Bueter; Brigitte Leeners; Jens F. Rehfeld; Thomas A. Lutz; Lori Asarian
We used a novel rat model to investigate the physiological bases of early satiation after Roux-en-Y gastric bypass surgery (RYGB). Female rats were subjected to RYGB or sham surgery. Chronic infusion catheters were placed in the Roux limb of RYGB rats and the corresponding anatomical locus of the jejuna of sham-RYGB rats. Rats were also ovariectomized and chronically treated with either estradiol (E2; 2 μg each 4th day SC) or the oil vehicle. Testing was begun 10-12 wk after surgery. Intrajejunal lipid infusions (10 min, 4.4 mL, 8.8 kcal) were performed just before test meals of a low-energy artificially sweetened gel diet (0.1 kcal/g) that RYGB rats ingest avidly. Intrajejunal lipid infusions reduced test-meal size more in RYGB rats than sham-operated rats, indicating that, at least after prolonged adaptation to surgery, the satiating actions of lipids acting intra- or post-jejunally are increased by RYGB and that accelerated meal appearance in the intestines after RYGB is not necessary for this effect. The satiating effects of intrajejunal lipid infusions were similar in E2-and oil-treated rats, suggesting that the effect was not dependent on an activational effect of estrogens. In a second experiment, pretreatment with the cholecystokinin A-receptor antagonist devazepide reduced the satiating effect of intrajejunal lipid infusions in E2-treated RYGB rats. Although these data are preliminary due to the smaller numbers of rats than in the first experiment, they suggest that cholecystokinin-mediated jejunal satiation contributes to early satiation after RYGB in ovariectomized rats with peri-ovulatory levels of estradiol. The results of these experiments may be relevant to understanding RYGB outcome in pre- and postmenopausal women.
Obesity Surgery | 2013
Christopher N. Ochner; Julio Teixeira; Nori Geary; Lori Asarian
Biology of Sex Differences | 2011
V. Gloy; Wolfgang Langhans; Jacquelien J.G. Hillebrand; Nori Geary; Lori Asarian
Appetite | 2011
Lori Asarian; Christina N. Boyle; Thomas A. Lutz