Lori S. Bross
Northern Illinois University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lori S. Bross.
Hearing Research | 1998
James F. Willott; Jeremy G Turner; Stephanie Carlson; Dalian Ding; Lori S. Bross; William A. Falls
To develop the BALB/c mouse strain as an animal model for the study of progressive sensorineural hearing loss, mice ranging in age from young adult through middle age were studied. Auditory brainstem response thresholds, histopathology [cytocochleograms for hair cells, the packing density of spiral ganglion cells (SGCs), the number of neurons and overall size of the anterior ventral cochlear nucleus (AVCN)], and behavioral paradigms (prepulse inhibition, fear-potentiated startle) were compared with previous data from C57BL/6J (C57) and DBA/2J (DBA) mouse strains. Progressive high frequency hearing loss in BALB/c mice was generally more rapid than C57 and slower than DBA (e.g. mean thresholds for 16 kHz: 10-month-old BALB/c mice = 71 dB SPL; 55-day-old DBA mice = 79 dB SPL; 12-month-old C57 mice = 50 dB SPL). Like the other strains, BALB/c exhibited a progressive loss of hair cells and SGCs that was most severe in the cochlear base and least severe in the middle turns; however, BALB/c mice had relatively more SGC loss in the apex. Unlike C57 and DBA, no loss of neurons was observed in the AVCN following cochlear pathology (although AVCN volume was reduced). Like the other strains, successful fear conditioning was obtained with a 12 kHz conditioned stimulus. Prepulse inhibition showed that middle and low frequency tones (4-12 kHz) became more salient as high frequency hearing declined. Similar results had been previously obtained with C57 and DBA mice and were interpreted as reflecting hearing-loss-induced plasticity in the central auditory system.
The Journal of Comparative Neurology | 1997
James F. Willott; Joseph C. Milbrandt; Lori S. Bross; Donald M. Caspary
Glycinergic neurons in the cochlear nucleus (CN) of C57BL/6J (C57) and CBA/CaJ (CBA) mice were studied by using immunocytochemical and receptor‐binding techniques. Adult C57 mice exhibit progressive cochlear pathology as they age, whereas aging CBA mice retain good hearing. In the CN of old C57 mice (18 months) with severe hearing loss, the number of glycine‐immunoreactive neurons decreased significantly. The number (Bmax) of strychnine‐sensitive glycine receptors (GlyR) decreased significantly in the dorsal CN of old C57 mice. Significant effects were not observed in the CN of middle‐aged C57 mice (with less‐severe hearing loss) or in very old CBA mice (which do not exhibit severe hearing loss). The data suggest that the combination of severe hearing loss and old age results in deficits in one or more inhibitory glycinergic circuits in the CN. J. Comp. Neurol. 385:405–414, 1997.
Developmental Brain Research | 1996
James F. Willott; Lori S. Bross
Morphological measurements were made on histological sections of the anteroventral cochlear nucleus (AVCN) in mice of the DBA/2J and C57BL/6J strains to determine the effects of sensorineural cochlear pathology on the number, packing density, and size of neurons and on AVCN volume. Both strains possess alleles that cause progressive cochlear pathology initially affecting the organ of Corti: in DBA mice, hearing loss is evident at 4 weeks of age and progresses rapidly; in C57 mice, hearing loss begins after 2 months of age and progresses more slowly. In both strains AVCN volume decreased, some loss of neurons occurred, and these changes paralleled the progression of peripheral hearing loss. Central changes were rapid in DBA mice, but the ultimate magnitude of the changes in 1-year-old mice did not differ between strains. Both strains differed from well-hearing CBA/J mice which exhibited no changes in the AVCN measures. The findings indicate that pathology of the organ of Corti in adult mice results in degenerative changes in the cochlear nucleus. The data also support earlier findings indicating that, if cochlear pathology does not begin prior to young adulthood, the age of onset and duration of sensorineural impairment have little effect on the ultimate magnitude of central effects.
Hearing Research | 1994
James F. Willott; Lori S. Bross; Sandra L. McFadden
The effects of chronic cochlear impairment on morphological features of the adult cochlear nucleus (CN) were assessed in CBA/J mice in which severe sensorineural damage had been induced by exposure to intense noise. Sections from various CN subdivisions, stained for Nissl substance and fibers, were quantitatively evaluated in four groups of noise-exposed mice that differed with regard to the age at noise exposure (2, 6, or 11 months), age at the time the CN was evaluated (6, 11, or 24 months), and the duration (chronicity) of sensorineural impairment (4, 5, 13, or 18 months). Like-aged, non-exposed CBA mice were used as controls, so the effects of peripheral damage and aging could be compared. Cochlear damage produced significant changes in CN subdivisions thought to receive the heaviest input from cochlear afferents (anteroventral CN, octopus cell area, dorsal CN layer III). These changes included a reduction of neuropil volume, reductions in neuron size, and increases in neuronal packing density that were complementary to reduced volume in these subdivisions. Effects on neuron number were minimal in all subdivisions. Central changes in noise-exposed mice were absent or diminished in DCN layers I and II, which receive relatively less input from primary fibers. The age at onset and chronicity of damage had little to do with the severity of central effects of cochlear damage. The effects of cochlear damage were not additive with age-related changes seen in the old controls.
Hearing Research | 2001
Esma Idrizbegovic; Barbara Canlon; Lori S. Bross; James F. Willott; Nenad Bogdanovic
The quantitative stereological method, the optical fractionator, was used for determining the total number of neurons and the total number of neurons immunostained with parvalbumin, calbindin-D28k (calbindin), and calretinin in the dorsal and posteroventral cochlear nucleus (DCN and PVCN) in CBA/CaJ (CBA) mice during aging (1-39 months old). CBA mice have only a modest sensorineural pathology late in life. An age-related decrease of the total number of neurons was demonstrated in the DCN (r=-0.54, P<0.03), while the total number of neurons in the PVCN did not show any significant age-related differences (r=0.16, P=0.57). In the DCN 5.5% of neurons were parvalbumin positive in the very old (30-39 months) mice, vs. 2.2% in the 1 month old mice. In the DCN 3% of the neurons were calbindin immunopositive in the 30-39 months mice compared to 1.9% in the 1 month old group. In the PVCN, 20% of the neurons in the very old mice were parvalbumin immunopositive, compared to 12% in the young mice. Calbindin did not show any significant age-related differences in the PVCN. The total number of calretinin immunopositive neurons both in the DCN and PVCN did not show any significant change with increasing age. In conclusion, the total neuronal number in the DCN and PVCN was age-related and region-specific. While the neuronal number in the DCN and PVCN was decreased or unchanged, respectively, the calcium binding protein positive neuronal number showed a graded increase during aging in a region-specific and protein-specific manner.
Neurobiology of Aging | 1994
James F. Willott; Lori S. Bross; Sandra L. McFadden
Basic anatomical features were evaluated in the inferior colliculus (IC) of C57BL/6J and CBA/J mice across the adult life span (1.5 to 30 months of age). C57BL/6J mice exhibit progressive age-related cochlear pathology and become severely hearing-impaired during the second year of life; CBA/J mice exhibit little hearing loss as they age. Age had little effect on the size of the IC, the size of IC neurons, or the packing density of IC neurons and there was no evidence of age-related neuron loss. However, old CBA/J mice developed numerous spongiform lesions throughout the brainstem. The absence of morphological changes in the IC of hearing-impaired C57BL/6J mice supports the hypothesis that features such as the size of neurons, survival of neurons, and volume of the neuropil are not affected by chronic sensorineural pathology in central auditory nuclei (e.g., as the IC) that do not receive direct input from primary afferent fibers. The data from both strains taken together indicate that certain basic anatomical properties of the mouse IC persist in the face of aging.
The Journal of Comparative Neurology | 2004
James F. Willott; Lori S. Bross
Genetic progressive sensorineural hearing loss in mice of the C57BL/6J (B6) inbred strain begins at high frequencies during young adulthood and is severe by 12 months (middle age). Nightly treatment with an augmented acoustic environment (AAE)—12‐hour periods of exposure to repetitive noise bursts of moderate intensity, begun at age 25 days—resulted in less severe hearing loss compared with control mice. Cochlear histopathological correlates of AAE treatment, assessed at 12–14 months of age, included lessened severity of progressive loss of outer hair cells in both sexes as well as small savings of spiral ganglion cells in females and inner hair cells in males. AAE effects on the number of surviving neurons (age 12–14 months) in the anterior ventral cochlear nucleus (AVCN) depended on sex. Compared with controls, the loss of AVCN neurons that typically accompanies the initial period of hearing loss (between 2 and 7 months of age) was not significantly affected by AAE treatment in females. In contrast, males treated with the AAE exhibited more severe loss of neurons in the dorsal and ventral extremes of the AVCN than male controls of the same age. AAE treatment begun at age 3–5 months resulted in significant but less severe loss of AVCN neurons in 1‐year‐old male mice. J. Comp. Neurol. 472:358–370, 2004.
Hearing Research | 2000
Kourosh Parham; G. Bonaiuto; Stephanie Carlson; Jeremy G Turner; W.R. D’Angelo; Lori S. Bross; A. Fox; James F. Willott; D. O. Kim
The cartwheel cell is the most numerous inhibitory interneuron of the dorsal cochlear nucleus (DCN). It is expected to be an important determinant of DCN function. To assess the contribution of the cartwheel cell, we examined the discharge characteristics of DCN neurons and behavioral measures in the Purkinje cell degeneration (pcd) mice, which lack cartwheel cells, and compared them to those of the control mice. Distortion product otoacoustic emissions and auditory brainstem-evoked response thresholds were similar between the two groups. Extracellularly recorded DCN single units in ketamine/xylazine-anesthetized mice were classified according to post-stimulus time histogram (PSTH) and excitatory-inhibitory response area (EI-area) schemes. PSTHs recorded in mouse DCN included chopper, pauser/buildup, onset, inhibited and nondescript types. EI-areas recorded included Types I, II, III, I/III, IV and V. There were no significant differences in the proportions of various unit types between the pcd and control mice. The pcd units had slightly lower thresholds to characteristic frequency tones; however, they had spontaneous rates, thresholds to noise, and maximum driven rates to noise that were similar to those of the control units. Pcd mice had smaller startle amplitudes, but startle latency, prepulse inhibition/augmentation and facilitation by a background tone were comparable between the two groups. From these results, we conclude that DCN function in response to relatively simple acoustic stimuli is minimally affected by the absence of the cartwheel cells. Future studies employing more complex and/or multimodal stimuli should help assess the role of the cartwheel cells.
The Biological Bulletin | 2010
Austin P. Parrin; Sarah E. Netherton; Lori S. Bross; Catherine S. McFadden; Neil W. Blackstone
Cilia-based transport systems characterize sponges and placozoans. Cilia are employed in cnidarian gastrovascular systems as well, but typically function in concert with muscular contractions. Previous reports suggest that anthozoans may be an exception to this pattern, utilizing only cilia in their gastrovascular systems. With an inverted microscope and digital image analysis, we used stoloniferan octocoral colonies growing on microscope cover glass to quantitatively describe the movement of fluids in this system for the first time. Flow in stolons (diameter ≈300 μm) is simultaneously bidirectional, with average velocities of 100–200 μm/s in each direction. Velocities are maximal immediately adjacent to the stolon wall and decrease to a minimum in the center of the stolon. Flow velocity is unaffected by stolonal contractions, suggesting that muscular peristalsis is not a factor in propelling the flow. Stolon intersections (diameter ≈500 μm) occur below polyps and serve as traffic roundabouts with unidirectional, circular flow. Such cilia-driven transport may be the plesiomorphic state for the gastrovascular system of cnidarians.
The Journal of Experimental Biology | 2008
Kimberly S. Cherry Vogt; Gabrielle C. Geddes; Lori S. Bross; Neil W. Blackstone
SUMMARY As with many colonial animals, hydractiniid hydroids display a range of morphological variation. Sheet-like forms exhibit feeding polyps close together with short connecting stolons, whereas runner-like forms have more distant polyps and longer connecting stolons. These morphological patterns are thought to derive from rates of stolon growth and polyp formation. Here, stolon regression is identified and characterized as a potential process underlying this variation. Typically, regression can be observed in a few stolons of a normally growing colony. For detailed studies, many stolons of a colony can be induced to regress by pharmacological manipulations of reactive oxygen species (e.g. hydrogen peroxide) or reactive nitrogen species (e.g. nitric oxide). The regression process begins with a cessation of gastrovascular flow to the distal part of the stolon. High levels of endogenous H2O2 and NO then accumulate in the regressing stolon. Remarkably, exogenous treatments with either H2O2 or an NO donor equivalently trigger endogenous formation of both H2O2 and NO. Cell death during regression is suggested by both morphological features, detected by transmission electron microscopy, and DNA fragmentation, detected by TUNEL. Stolon regression may occur when colonies detect environmental signals that favor continued growth in the same location rather than outward growth.