Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lori V. Coren is active.

Publication


Featured researches published by Lori V. Coren.


Journal of Virology | 2006

Proteomic and Biochemical Analysis of Purified Human Immunodeficiency Virus Type 1 Produced from Infected Monocyte-Derived Macrophages

Elena Chertova; Oleg Chertov; Lori V. Coren; James D. Roser; Charles M. Trubey; Julian W. Bess; Raymond C. Sowder; Eugene V. Barsov; Brian L. Hood; Robert J. Fisher; Kunio Nagashima; Thomas P. Conrads; Timothy D. Veenstra; Jeffrey D. Lifson; David E. Ott

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infects CD4+ T lymphocytes and monocytes/macrophages, incorporating host proteins in the process of assembly and budding. Analysis of the host cell proteins incorporated into virions can provide insights into viral biology. We characterized proteins in highly purified HIV-1 virions produced from human monocyte-derived macrophages (MDM), within which virus buds predominantly into intracytoplasmic vesicles, in contrast to the plasmalemmal budding of HIV-1 typically seen with infected T cells. Liquid chromatography-linked tandem mass spectrometry of highly purified virions identified many cellular proteins, including 33 previously described proteins in HIV-1 preparations from other cell types. Proteins involved in many different cellular structures and functions were present, including those from the cytoskeleton, adhesion, signaling, intracellular trafficking, chaperone, metabolic, ubiquitin/proteasomal, and immune response systems. We also identified annexins, annexin-binding proteins, Rab proteins, and other proteins involved in membrane organization, vesicular trafficking, and late endosomal function, as well as apolipoprotein E, which participates in cholesterol transport, immunoregulation, and modulation of cell growth and differentiation. Several tetraspanins, markers of the late endosomal compartment, were also identified. MDM-derived HIV contained 26 of 37 proteins previously found in exosomes, consistent with the idea that HIV uses the late endosome/multivesicular body pathway during virion budding from macrophages.


Science | 1995

Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS.

William G. Rice; Jeffrey G. Supko; Louis Malspeis; Robert W. Buckheit; David J. Clanton; Ming Bu; Lisa Graham; Catherine A. Schaeffer; Jim A. Turpin; John M. Domagala; Rocco D. Gogliotti; John P. Bader; Susan M. Halliday; Lori V. Coren; Raymond C. Sowder; Larry O. Arthur; Louis E. Henderson

Strategies for the treatment of human immunodeficiency virus-type 1 (HIV-1) infection must contend with the obstacle of drug resistance. HIV-1 nucleocapsid protein zinc fingers are prime antiviral targets because they are mutationally intolerant and are required both for acute infection and virion assembly. Nontoxic disulfide-substituted benzamides were identified that attack the zinc fingers, inactivate cell-free virions, inhibit acute and chronic infections, and exhibit broad antiretroviral activity. The compounds were highly synergistic with other antiviral agents, and resistant mutants have not been detected. Zinc finger-reactive compounds may offer an anti-HIV strategy that restricts drug-resistance development.


PLOS Pathogens | 2008

Real-Time Visualization of HIV-1 GAG Trafficking in Infected Macrophages

Karine Gousset; Sherimay D. Ablan; Lori V. Coren; Akira Ono; Ferri Soheilian; Kunio Nagashima; David E. Ott; Eric O. Freed

HIV-1 particle production is driven by the Gag precursor protein Pr55Gag. Despite significant progress in defining both the viral and cellular determinants of HIV-1 assembly and release, the trafficking pathway used by Gag to reach its site of assembly in the infected cell remains to be elucidated. The Gag trafficking itinerary in primary monocyte-derived macrophages is especially poorly understood. To define the site of assembly and characterize the Gag trafficking pathway in this physiologically relevant cell type, we have made use of the biarsenical-tetracysteine system. A small tetracysteine tag was introduced near the C-terminus of the matrix domain of Gag. The insertion of the tag at this position did not interfere with Gag trafficking, virus assembly or release, particle infectivity, or the kinetics of virus replication. By using this in vivo detection system to visualize Gag trafficking in living macrophages, Gag was observed to accumulate both at the plasma membrane and in an apparently internal compartment that bears markers characteristic of late endosomes or multivesicular bodies. Significantly, the internal Gag rapidly translocated to the junction between the infected macrophages and uninfected T cells following macrophage/T-cell synapse formation. These data indicate that a population of Gag in infected macrophages remains sequestered internally and is presented to uninfected target cells at a virological synapse.


Journal of Virology | 2005

Dynamic Fluorescent Imaging of Human Immunodeficiency Virus Type 1 Gag in Live Cells by Biarsenical Labeling

Lynnie Rudner; Sascha Nydegger; Lori V. Coren; Kunio Nagashima; Markus Thali; David E. Ott

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Gag is the primary structural protein of the virus and is sufficient for particle formation. We utilized the recently developed biarsenical-labeling method to dynamically observe HIV-1 Gag within live cells by adding a tetracysteine tag (C-C-P-G-C-C) to the C terminus of Gag in both Pr55Gag expression and full-length proviral constructs. Membrane-permeable biarsenical compounds FlAsH and ReAsH covalently bond to this tetracysteine sequence and specifically fluoresce, effectively labeling Gag in the cell. Biarsenical labeling readily and specifically detected a tetracysteine-tagged HIV-1 Gag protein (Gag-TC) in HeLa, Mel JuSo, and Jurkat T cells by deconvolution fluorescence microscopy. Gag-TC was localized primarily at or near the plasma membrane in all cell types examined. Fluorescent two-color analysis of Gag-TC in HeLa cells revealed that nascent Gag was present mostly at the plasma membrane in distinct regions. Intracellular imaging of a Gag-TC myristylation mutant observed a diffuse signal throughout the cell, consistent with the role of myristylation in Gag localization to the plasma membrane. In contrast, mutation of the L-domain core sequence did not appreciably alter the localization of Gag, suggesting that the PTAP L domain functions at the site of budding rather than as a targeting signal. Taken together, our results show that Gag concentrates in specific plasma membrane areas rapidly after translation and demonstrate the utility of biarsenical labeling for visualizing the dynamic localization of Gag.


Journal of Virology | 2005

Redundant Roles for Nucleocapsid and Matrix RNA-Binding Sequences in Human Immunodeficiency Virus Type 1 Assembly

David E. Ott; Lori V. Coren; Tracy D. Gagliardi

ABSTRACT RNA appears to be required for the assembly of retroviruses. This is likely due to binding of RNA by multiple Gags, which in turn organizes and stabilizes the Gag-Gag interactions that form the virion. While the nucleocapsid (NC) domain is the most conspicuous RNA-binding region of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein, we have previously shown that NC is not strictly required for efficient particle production. To determine if an RNA requirement for HIV-1 assembly exists, we analyzed virions produced by an NC deletion mutant for the presence of RNA. The results revealed that virions without NC still contained significant amounts of RNA. Since these packaged RNAs are probably incorporated by other RNA-binding sequences in Gag, an RNA-binding site in the matrix protein (MA) of Gag was mutated. While this mutation did not interfere with HIV-1 replication, a construct with both MA and NC mutations (MX/NX) failed to produce particles. The MX/NX mutant was rescued in trans by coassembly with several forms of Gag: wild-type Gag, either of the single-mutant Gags, or Gag truncations that contain MA or NC sequences. Addition of basic sequences to the MX/NX mutant partially restored particle production, consistent with a requirement for Gag-RNA binding in addition to Gag-Gag interactions. Together, these results support an RNA-binding requirement for Gag assembly, which relies on binding of RNA by MA or NC sequences to condense, organize, and stabilize the HIV-1 Gag-Gag interactions that form the virion.


Journal of Virology | 2003

Retroviruses Have Differing Requirements for Proteasome Function in the Budding Process

David E. Ott; Lori V. Coren; Raymond C. Sowder; Julian Adams; Ulrich S. Schubert

ABSTRACT Proteasome inhibitors reduce the budding of human immunodeficiency virus types 1 (HIV-1) and 2, simian immunodeficiency virus, and Rous sarcoma virus. To investigate this effect further, we examined the budding of other retroviruses from proteasome inhibitor-treated cells. The viruses tested differed in their Gag organization, late (L) domain usage, or assembly site from those previously examined. We found that proteasome inhibition decreased the budding of murine leukemia virus (plasma membrane assembly, PPPY L domain) and Mason-Pfizer monkey virus (cytoplasmic assembly, PPPY L domain), similar to the reduction observed for HIV-1. Thus, proteasome inhibitors can affect the budding of a virus that assembles within the cytoplasm. However, the budding of mouse mammary tumor virus (MMTV; cytoplasmic assembly, unknown L domain) was unaffected by proteasome inhibitors, similar to the proteasome-independent budding previously observed for equine infectious anemia virus (plasma membrane assembly, YPDL L domain). Examination of MMTV particles detected Gag-ubiquitin conjugates, demonstrating that an interaction with the ubiquitination system occurs during assembly, as previously found for other retroviruses. For all of the cell lines tested, the inhibitor treatment effectively inactivated proteasomes, as measured by the accumulation of polyubiquitinated proteins. The ubiquitination system was also inhibited, as evidenced by the loss of monoubiquitinated histones from treated cells. These results and those from other viruses show that proteasome inhibitors reduce the budding of viruses that utilize either a PPPY- or PTAP-based L domain and that this effect does not depend on the assembly site or the presence of monoubiquitinated Gag in the virion.


Journal of Virology | 2003

Quantitation of HLA class II protein incorporated into human immunodeficiency type 1 virions purified by anti-CD45 immunoaffinity depletion of microvesicles.

Charles M. Trubey; Elena Chertova; Lori V. Coren; Joanne M. Hilburn; Catherine V. Hixson; Kunio Nagashima; Jeffrey D. Lifson; David E. Ott

ABSTRACT Among the many host cell-derived proteins found in human immunodeficiency virus type 1 (HIV-1), HLA class II (HLA-II) appears to be selectively incorporated onto virions and may contribute to mechanisms of indirect imunopathogenesis in HIV infection and AIDS. However, the amount of HLA-II on the surface of HIV-1 particles has not been reliably determined due to contamination of virus preparations by microvesicles containing host cell proteins, including HLA-II. Even rigorous sucrose density centrifugation is unable to completely separate HIV-1 from microvesicles. CD45, a leukocyte integral membrane protein, is found on microvesicles, yet appears to be excluded from HIV-1 particles. Exploiting this observation, we have developed a CD45-based immunoaffinity depletion method for removing CD45-containing microvesicles that yields highly purified preparations of virions. Examination of CD45-depleted HIV-1MN by high-pressure liquid chromatography, protein sequencing, and amino acid analyses determined a molar ratio of HLA-II to Gag of 0.04 to 0.05 in the purified virions, corresponding to an estimated average of 50 to 63 native HLA-II complexes (i.e., a dimer of α and β heterodimers) per virion. These values are approximately 5- to 10-fold lower than those previously determined for other virion preparations that contained microvesicles. Our observations demonstrate the utility of CD45 immunoaffinity-based approaches for producing highly purified retrovirus preparations for applications that would benefit from the use of virus that is essentially free of microvesicles.


Journal of Virology | 2002

Equine Infectious Anemia Virus and the Ubiquitin-Proteasome System

David E. Ott; Lori V. Coren; Raymond C. Sowder; Julian Adams; Kunio Nagashima; Ulrich S. Schubert

ABSTRACT Some retroviruses contain monoubiquitinated Gag and do not bud efficiently from cells treated with proteasome inhibitors, suggesting an interaction between the ubiquitin-proteasome system and retrovirus assembly. We examined equine infectious anemia virus (EIAV) particles and found that approximately 2% of the p9Gag proteins are monoubiquitinated, demonstrating that this Gag protein interacts with an ubiquitinating activity. Different types of proteasome inhibitors were used to determine if proteasome inactivation affects EIAV release from chronically infected cells. Pulse-chase immunoprecipitation and time course immunoblot analyses showed that proteasome inactivation slightly decreased virus release (at most a twofold effect), while it did not affect Gag processing. These results contrast with those obtained with other viruses which are sensitive to these inhibitors. This suggests that, although its Gag is monoubiquitinated, the requirements for EIAV release are somewhat different from those for retroviruses that are sensitive to proteasome inhibitors.


Journal of Virology | 2007

Mutational Analysis of the C-Terminal Gag Cleavage Sites in Human Immunodeficiency Virus Type 1

Lori V. Coren; James A. Thomas; Elena Chertova; Raymond C. Sowder; Tracy D. Gagliardi; Robert J. Gorelick; David E. Ott

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Gag is expressed as a polyprotein that is cleaved into six proteins by the viral protease in a maturation process that begins during assembly and budding. While processing of the N terminus of Gag is strictly required for virion maturation and infectivity, the necessity for the C-terminal cleavages of Gag is less well defined. To examine the importance of this process, we introduced a series of mutations into the C terminus of Gag that interrupted the cleavage sites that normally produce in the nucleocapsid (NC), spacer 2 (SP2), or p6Gag proteins. Protein analysis showed that all of the mutant constructs produced virions efficiently upon transfection of cells and appropriately processed Gag polyprotein at the nonmutated sites. Mutants that produced a p9NC/SP2 protein exhibited only minor effects on HIV-1 infectivity and replication. In contrast, mutants that produced only the p8SP2/p6 or p15NC/SP2/p6 protein had severe defects in infectivity and replication. To identify the key defective step, we quantified reverse transcription and integration products isolated from infected cells by PCR. All mutants tested produced levels of reverse transcription products either similar to or only somewhat lower than that of wild type. In contrast, mutants that failed to cleave the SP2-p6Gag site produced drastically less provirus than the wild type. Together, our results show that processing of the SP2-p6Gag and not the NC-SP2 cleavage site is important for efficient viral DNA integration during infection in vitro. In turn, this finding suggests an important role for the p9NC/SP2 species in some aspect of integration.


Journal of Virology | 2003

Elimination of Protease Activity Restores Efficient Virion Production to a Human Immunodeficiency Virus Type 1 Nucleocapsid Deletion Mutant

David E. Ott; Lori V. Coren; Elena Chertova; Tracy D. Gagliardi; Kunio Nagashima; Raymond C. Sowder; Dexter T. K. Poon; Robert J. Gorelick

ABSTRACT The nucleocapsid (NC) region of human immunodeficiency virus type 1 (HIV-1) Gag is required for specific genomic RNA packaging. To determine if NC is absolutely required for virion formation, we deleted all but seven amino acids from NC in a full-length NL4-3 proviral clone. This construct, DelNC, produced approximately four- to sixfold fewer virions than did the wild type, and these virions were noninfectious (less than 10−6 relative to the wild type) and severely genomic RNA deficient. Immunoblot and high-pressure liquid chromatography analyses showed that all of the mature Gag proteins except NC were present in the mutant virion preparations, although there was a modest decrease in Gag processing. DelNC virions had lower densities and were more heterogeneous than wild-type particles, consistent with a defect in the interaction assembly or I domain. Electron microscopy showed that the DelNC virions displayed a variety of aberrant morphological forms. Inactivating the protease activity of DelNC by mutation or protease inhibitor treatment restored virion production to wild-type levels. DelNC-protease mutants formed immature-appearing particles that were as dense as wild-type virions without incorporating genomic RNA. Therefore, protease activity combined with the absence of NC causes the defect in DelNC virion production, suggesting that premature processing of Gag during assembly causes this effect. These results show that HIV-1 can form particles efficiently without NC.

Collaboration


Dive into the Lori V. Coren's collaboration.

Top Co-Authors

Avatar

David E. Ott

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Raymond C. Sowder

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Tracy D. Gagliardi

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Elena Chertova

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kunio Nagashima

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Donald G. Johnson

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Larry O. Arthur

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge