Lorna Flanagan
Royal College of Surgeons in Ireland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorna Flanagan.
European Journal of Clinical Microbiology & Infectious Diseases | 2014
Lorna Flanagan; Jasmin Schmid; Matthias P. Ebert; Pavel Soucek; Tereza Kunická; Vaclav Liska; Jan Bruha; Paul Neary; Nicki Dezeeuw; Massimo Tommasino; Mazda Jenab; Jochen H. M. Prehn; David J. Hughes
Commensal bacteria in the colon may play a role in colorectal cancer (CRC) development. Recent studies from North America showed that Fusobacterium nucleatum (Fn) infection is over-represented in disease tissue versus matched normal tissue in CRC patients. Using quantitative real-time polymerase chain reaction (qPCR) of DNA extracted from colorectal tissue biopsies and surgical resections of three European cohorts totalling 122 CRC patients, we found an over-abundance of Fn in cancerous compared to matched normal tissue (p < 0.0001). To determine whether Fn infection is an early event in CRC development, we assayed Fn in colorectal adenoma (CRA) tissue from 52 Irish patients. While for all CRAs the Fn level was not statistically significantly higher in disease versus normal tissue (p = 0.06), it was significantly higher for high-grade dysplasia (p = 0.015). As a secondary objective, we determined that CRC patients with low Fn levels had a significantly longer overall survival time than patients with moderate and high levels of the bacterium (p = 0.008). The investigation of Fn as a potential non-invasive biomarker for CRC screening showed that, while Fn was more abundant in stool samples from CRC patients compared to adenomas or controls, the levels in stool did not correlate with cancer or adenoma tissue levels from the same individuals. This is the first study examining Fn in the colonic tissue and stool of European CRC and CRA patients, and suggests Fn as a novel risk factor for disease progression from adenoma to cancer, possibly affecting patient survival outcomes. Our results highlight the potential of Fn detection as a diagnostic and prognostic determinant in CRC patients.
Cell Death and Disease | 2013
Karen Boland; Lorna Flanagan; Jochen H. M. Prehn
Executioner caspases such as Caspase-3 and Caspase-7 have long been recognised as the key proteases involved in cell demolition during apoptosis. Caspase activation also modulates signal transduction inside cells, through activation or inactivation of kinases, phosphatases and other signalling molecules. Interestingly, a series of recent studies have demonstrated that caspase activation may also influence signal transduction and gene expression changes in neighbouring cells that themselves did not activate caspases. This review describes the physiological relevance of paracrine Caspase-3 signalling for developmental processes, tissue homeostasis and tissue regeneration, and discusses the role of soluble factors and microparticles in mediating these paracrine activities. While non-cell autonomous control of tissue regeneration by Caspase-3 may represent an important process for maintaining tissue homeostasis, it may limit the efficiency of current cancer therapy by promoting cell proliferation in those cancer cells resistant to radio- or chemotherapy. We discuss recent evidence in support of such a role for Caspase-3, and discuss its therapeutic implication.
Cell Death and Disease | 2010
Lorna Flanagan; Jordi Sebastia; Liam P. Tuffy; Aidan Spring; A Lichawska; Marc Devocelle; Jochen H. M. Prehn; Markus Rehm
X-linked inhibitor of apoptosis protein (XIAP) is a potent inhibitor of caspases 3, 7 and 9, and mitochondrial Smac (second mitochondria-derived activator of caspase) release during apoptosis inhibits the activity of XIAP. In this study we show that cytosolic XIAP also feeds back to mitochondria to impair Smac release. We constructed a fluorescent XIAP-fusion protein by labelling NH2- and COOH-termini with Cerulean fluorescent protein (C-XIAP-C). Immunoprecipitation confirmed that C-XIAP-C retained the ability to interact with Smac and impaired extrinsically and intrinsically activated apoptosis in response to tumour necrosis factor-related apoptosis-inducing ligand/cycloheximide and staurosporine. In C-XIAP-C-expressing cells, cytochrome c release from mitochondria proceeded normally, whereas Smac release was significantly prolonged and incomplete. In addition, physiological expression of native XIAP prolonged or limited Smac release in HCT-116 colon cancer cells and primary mouse cortical neurons. The Smac-binding capacity of XIAP, but not caspase inhibition, was central for mitochondrial Smac retention, as evidenced in experiments using XIAP mutants that cannot bind to Smac or effector caspases. Similarly, the release of a Smac mutant that cannot bind to XIAP was not impaired by C-XIAP-C expression. Full Smac release could however be provoked by rapid cytosolic C-XIAP-C depletion upon digitonin-induced plasma membrane permeabilization. Our findings suggest that although mitochondria may already contain pores sufficient for cytochrome c release, elevated amounts of XIAP can selectively impair and limit the release of Smac.
Cell Death and Disease | 2016
Lorna Flanagan; M Meyer; Joanna Fay; Sarah Curry; Orna Bacon; Heiko Duessmann; Katharina John; Karen Boland; Deborah A. McNamara; Elaine Kay; Heike Bantel; H Schulze-Bergkamen; Jochen H. M. Prehn
Colorectal cancer (CRC) is one of the most common cancers in the Western world. 5-Fluorouracil (5FU)-based chemotherapy (CT) remains the mainstay treatment of CRC in the advanced setting, and activates executioner caspases in target cells. Executioner caspases are key proteins involved in cell disassembly during apoptosis. Activation of executioner caspases also has a role in tissue regeneration and repopulation by stimulating signal transduction and cell proliferation in neighbouring, non-apoptotic cells as reported recently. Tissue microarrays (TMAs) consisting of tumour tissue from 93 stage II and III colon cancer patients were analysed by immunohistochemistry. Surprisingly, patients with low levels of active Caspase-3 had an increased disease-free survival time. This was particularly pronounced in patients who received 5FU-based adjuvant CT. In line with this observation, lower serum levels of active Caspase-3 were found in patients with metastasised CRC who revealed stable disease or tumour regression compared with those with disease progression. The role of Caspase-3 in treatment responses was explored further in primary human tumour explant cultures from fresh patient tumour tissue. Exposure of explant cultures to 5FU-based CT increased the percentage of cells positive for active Caspase-3 and Terminal Deoxynucleotidyl Transferase dUTP Nick end Labelling (TUNEL), but also the expression of regeneration and proliferation markers β-Catenin and Ki-67, as well as cyclooxygenase-2 (COX-2). Of note, selective inhibition of Caspase-3 with Ac-DNLD-CHO, a selective, reversible inhibitor of Caspase-3, significantly reduced the expression of proliferation markers as well as COX-2. Inhibition of COX-2 with aspirin or celecoxib did not affect Caspase-3 levels but also reduced Ki-67 and β-Catenin levels, suggesting that Caspase-3 acted via COX-2 to stimulate cell proliferation and tissue regeneration. This indicates that low levels of active Caspase-3 may represent a new predictor of CT responsiveness, and inhibition of Caspase-3, or antagonising downstream effectors of Caspase-3 paracrine signalling, such as COX-2 may improve patient outcomes following CT in advanced CRC.
Journal of Biological Chemistry | 2012
Maike A. Laussmann; Egle Passante; Christian T. Hellwig; Bartłomiej Tomiczek; Lorna Flanagan; Jochen H. M. Prehn; Heinrich J. Huber; Markus Rehm
Background: TRAIL can induce both apoptotic and prosurvival signaling pathways. Results: In the apoptotic pathway, proteasome inhibition can impair caspase-8 activation, particularly at submaximal TRAIL doses. Conclusion: TRAIL/proteasome inhibitor synergies cannot be explained by enhanced caspase-8 activation through the apoptosis signaling branch. Significance: Inhibition of nonapoptotic signaling may be the major upstream contributor to TRAIL/proteasome inhibitor synergies. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) can induce extrinsic apoptosis, resulting in caspase-8 activation, but may also initiate transcription-dependent prosurvival signaling. Proteasome inhibitors were suggested to promote TRAIL signal transduction through the death-inducing signaling complex (DISC) by modulating the relative abundance of core DISC components, thereby enhancing caspase-8 activation and apoptosis. To test this hypothesis, we quantified the changes in DISC protein levels as an early consequence of proteasome inhibition in HeLa cervical cancer cells and, based on these data, mathematically modeled the proapoptotic TRAIL signaling toward caspase-8 activation. Modeling results surprisingly suggested that caspase-8 activation might be delayed in presence of proteasome inhibitors, in particular at submaximal TRAIL doses. Subsequent FRET-based single cell time-lapse imaging at conditions where transcription dependent prosurvival signaling was blocked confirmed this hypothesis: caspase-8 activity was delayed by hours in the presence of proteasome inhibitors epoxomicin or bortezomib. Corresponding delays were detected for effector caspase processing and cell death. Contrary to current models, we therefore provide evidence that synergies between TRAIL and proteasome inhibitors do not result from changes in the levels of core DISC signaling proteins.
Journal of Cellular and Molecular Medicine | 2011
Agnieszka H. Ludwig-Galezowska; Lorna Flanagan; Markus Rehm
• Introduction • ARC identification and tissue‐specific expression • The molecular structure of ARC • (Patho)physiology and ARC expression ‐ Physiological role and expression of ARC in cardiac and skeletal muscle tissue ‐ Physiological role and expression of ARC in brain tissue ‐ ARC expression and localization in cancer • Regulation of ARC protein levels by gene transcription and protein degradation • Multi‐functionality of ARC in apoptosis inhibition ‐ Extrinsic apoptosis initiation ‐ Intrinsic apoptosis initiation and the mitochondrial apoptosis pathway • Concluding comments
Journal of Biological Chemistry | 2012
Jasmin Schmid; Heiko Düssmann; Gerhardt J. Boukes; Lorna Flanagan; Andreas U. Lindner; Carla L. O'Connor; Markus Rehm; Jochen H. M. Prehn; Heinrich J. Huber
Background: Computational systems models may allow understanding of progression and impairment of apoptosis based on quantitative protein profiles. Results: We found apoptosis to be impaired in some cell lines after MOMP, which can be understood by our systems model “APOPTO-CELL”. Conclusion: APOPTO-CELL helps to understand heterogeneity in apoptosis execution after MOMP. Significance: APOPTO-CELL may help to assess cancer-specific efficacy of chemotherapeutics that induce apoptosis. Deregulation of apoptosis is a hallmark of carcinogenesis. We here combine live cell imaging and systems modeling to investigate caspase-dependent apoptosis execution subsequent to mitochondrial outer membrane permeabilization (MOMP) in several cancer cell lines. We demonstrate that, although most cell lines that underwent MOMP also showed robust and fast activation of executioner caspases and apoptosis, the colorectal cancer cell lines LoVo and HCT-116 Smac−/−, similar to X-linked inhibitor of apoptosis protein (XIAP)-overexpressing HeLa (HeLa XIAPAdv) cells, only showed delayed and often no caspase activation, suggesting apoptosis impairment subsequent to MOMP. Employing APOPTO-CELL, a recently established model of apoptosis subsequent to MOMP, this impairment could be understood by studying the systemic interaction of five proteins that are present in the apoptosis pathway subsequent to MOMP. Using APOPTO-CELL as a tool to study detailed molecular mechanisms during apoptosis execution in individual cell lines, we demonstrate that caspase-9 was the most important regulator in DLD-1, HCT-116, and HeLa cells and identified additional cell line-specific co-regulators. Developing and applying a computational workflow for parameter screening, systems modeling identified that apoptosis execution kinetics are more robust against changes in reaction kinetics in HCT-116 and HeLa than in DLD-1 cells. Our systems modeling study is the first to draw attention to the variability in cell specific protein levels and reaction rates and to the emergent effects of such variability on the efficiency of apoptosis execution and on apoptosis impairment subsequent to MOMP.
Gut | 2017
Andreas U. Lindner; Manuela Salvucci; Clare Morgan; Naser Monsefi; Alexa Resler; Mattia Cremona; Sarah Curry; Sinead Toomey; Robert O'Byrne; Orna Bacon; Michael Stühler; Lorna Flanagan; Richard Wilson; Patrick G. Johnston; Manuel Salto-Tellez; Sophie Camilleri-Broët; Deborah A. McNamara; Elaine Kay; Bryan T. Hennessy; Pierre Laurent-Puig; Sandra Van Schaeybroeck; Jochen H. M. Prehn
Objective The mitochondrial apoptosis pathway is controlled by an interaction of multiple BCL-2 family proteins, and plays a key role in tumour progression and therapy responses. We assessed the prognostic potential of an experimentally validated, mathematical model of BCL-2 protein interactions (DR_MOMP) in patients with stage III colorectal cancer (CRC). Design Absolute protein levels of BCL-2 family proteins were determined in primary CRC tumours collected from n=128 resected and chemotherapy-treated patients with stage III CRC. We applied DR_MOMP to categorise patients as high or low risk based on model outputs, and compared model outputs with known prognostic factors (T-stage, N-stage, lymphovascular invasion). DR_MOMP signatures were validated on protein of n=156 patients with CRC from the Cancer Genome Atlas (TCGA) project. Results High-risk stage III patients identified by DR_MOMP had an approximately fivefold increased risk of death compared with patients identified as low risk (HR 5.2, 95% CI 1.4 to 17.9, p=0.02). The DR_MOMP signature ranked highest among all molecular and pathological features analysed. The prognostic signature was validated in the TCGA colon adenocarcinoma (COAD) cohort (HR 4.2, 95% CI 1.1 to 15.6, p=0.04). DR_MOMP also further stratified patients identified by supervised gene expression risk scores into low-risk and high-risk categories. BCL-2-dependent signalling critically contributed to treatment responses in consensus molecular subtypes 1 and 3, linking for the first time specific molecular subtypes to apoptosis signalling. Conclusions DR_MOMP delivers a system-based biomarker with significant potential as a prognostic tool for stage III CRC that significantly improves established histopathological risk factors.
Clinical Cancer Research | 2017
Manuela Salvucci; Maximilian L. Würstle; Clare Morgan; Sarah Curry; Mattia Cremona; Andreas U. Lindner; Orna Bacon; Alexa Resler; Áine C. Murphy; Robert O'Byrne; Lorna Flanagan; Sonali Dasgupta; Nadege Rice; Camilla Pilati; Elisabeth Zink; Lisa M. Schöller; Sinead Toomey; Mark Lawler; Patrick G. Johnston; Richard Wilson; Sophie Camilleri-Broët; Manuel Salto-Tellez; Deborah A. McNamara; Elaine Kay; Pierre Laurent-Puig; Sandra Van Schaeybroeck; Bryan T. Hennessy; Daniel B. Longley; Markus Rehm; Jochen H. M. Prehn
Purpose: Apoptosis is essential for chemotherapy responses. In this discovery and validation study, we evaluated the suitability of a mathematical model of apoptosis execution (APOPTO-CELL) as a stand-alone signature and as a constituent of further refined prognostic stratification tools. Experimental Design: Apoptosis competency of primary tumor samples from patients with stage III colorectal cancer (n = 120) was calculated by APOPTO-CELL from measured protein concentrations of Procaspase-3, Procaspase-9, SMAC, and XIAP. An enriched APOPTO-CELL signature (APOPTO-CELL-PC3) was synthesized to capture apoptosome-independent effects of Caspase-3. Furthermore, a machine learning Random Forest approach was applied to APOPTO-CELL-PC3 and available molecular and clinicopathologic data to identify a further enhanced signature. Association of the signature with prognosis was evaluated in an independent colon adenocarcinoma cohort (TCGA COAD, n = 136). Results: We identified 3 prognostic biomarkers (P = 0.04, P = 0.006, and P = 0.0004 for APOPTO-CELL, APOPTO-CELL-PC3, and Random Forest signatures, respectively) with increasing stratification accuracy for patients with stage III colorectal cancer. The APOPTO-CELL-PC3 signature ranked highest among all features. The prognostic value of the signatures was independently validated in stage III TCGA COAD patients (P = 0.01, P = 0.04, and P = 0.02 for APOPTO-CELL, APOPTO-CELL-PC3, and Random Forest signatures, respectively). The signatures provided further stratification for patients with CMS1-3 molecular subtype. Conclusions: The integration of a systems-biology–based biomarker for apoptosis competency with machine learning approaches is an appealing and innovative strategy toward refined patient stratification. The prognostic value of apoptosis competency is independent of other available clinicopathologic and molecular factors, with tangible potential of being introduced in the clinical management of patients with stage III colorectal cancer. Clin Cancer Res; 23(5); 1200–12. ©2016 AACR.
British Journal of Cancer | 2016
Zaitun Zakaria; Amanda Tivnan; Lorna Flanagan; David W. Murray; Manuela Salvucci; Brett W. Stringer; Bryan W. Day; Andrew W. Boyd; Donat Kögel; Markus Rehm; Donncha O'Brien; Annette T. Byrne; Jochen H. M. Prehn
Background:Resistance to temozolomide (TMZ) greatly limits chemotherapeutic effectiveness in glioblastoma (GBM). Here we analysed the ability of the Inhibitor-of-apoptosis-protein (IAP) antagonist birinapant to enhance treatment responses to TMZ in both commercially available and patient-derived GBM cells.Methods:Responses to TMZ and birinapant were analysed in a panel of commercial and patient-derived GBM cell lines using colorimetric viability assays, flow cytometry, morphological analysis and protein expression profiling of pro- and antiapoptotic proteins. Responses in vivo were analysed in an orthotopic xenograft GBM model.Results:Single-agent treatment experiments categorised GBM cells into TMZ-sensitive cells, birinapant-sensitive cells, and cells that were insensitive to either treatment. Combination treatment allowed sensitisation to therapy in only a subset of resistant GBM cells. Cell death analysis identified three principal response patterns: Type A cells that readily activated caspase-8 and cell death in response to TMZ while addition of birinapant further sensitised the cells to TMZ-induced cell death; Type B cells that readily activated caspase-8 and cell death in response to birinapant but did not show further sensitisation with TMZ; and Type C cells that showed no significant cell death or moderately enhanced cell death in the combined treatment paradigm. Furthermore, in vivo, a Type C patient-derived cell line that was TMZ-insensitive in vitro and showed a strong sensitivity to TMZ and TMZ plus birinapant treatments.Conclusions:Our results demonstrate remarkable differences in responses of patient-derived GBM cells to birinapant single and combination treatments, and suggest that therapeutic responses in vivo may be greatly affected by the tumour microenvironment.