Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorraine B. Anderson is active.

Publication


Featured researches published by Lorraine B. Anderson.


Electrophoresis | 2010

Identification of Candidate Biomarkers in Ovarian Cancer Serum by Depletion of Highly Abundant Proteins and Differential In Gel Electrophoresis

John D. Andersen; Kristin L.M. Boylan; Feifei S. Xue; Lorraine B. Anderson; Bruce A. Witthuhn; Todd W. Markowski; LeeAnn Higgins; Amy P.N. Skubitz

Ovarian cancer is the fifth leading cause of cancer death for women in the US, yet survival rates are over 90% when it is diagnosed at an early stage, highlighting the need for biomarkers for early detection. To enhance the discovery of tumor‐specific proteins that could represent novel serum biomarkers for ovarian cancer, we depleted serum of highly abundant proteins which can mask the detection of proteins present in serum at low concentrations. Three commercial immunoaffinity columns were used in parallel to deplete the highly abundant proteins in serum from 60 patients with serous ovarian carcinoma and 60 non‐cancer controls. Medium and low abundance serum proteins from each serum pool were then evaluated by the quantitative proteomic technique of differential in‐gel electrophoresis. The number of protein spots that were elevated in ovarian cancer sera by at least twofold ranged from 36 to 248, depending upon the depletion and separation methods. From the 33 spots picked for MS analysis, nine different proteins were identified, including the novel candidate ovarian cancer biomarkers leucine‐rich α2 glycoprotein‐1 and ficolin 3. Western blotting validated the relative increases in serum protein levels for three of the proteins identified, demonstrating the utility of this approach for the identification of novel serum biomarkers for ovarian cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Posttranslational modifications in the CP43 subunit of photosystem II

Lorraine B. Anderson; Melissa Maderia; Anthony J. A. Ouellette; Cindy Putnam-Evans; LeeAnn Higgins; Thomas P. Krick; Michael J. MacCoss; Hanjo Lim; John R. Yates; Bridgette A. Barry

Photosystem II (PSII) catalyzes the light-driven oxidation of water and the reduction of plastoquinone; the oxidation of water occurs at a cluster of four manganese. The PSII CP43 subunit functions in light harvesting, and mutations in the fifth luminal loop (E) of CP43 have established its importance in PSII structure and/or assembly [Kuhn, M. G. & Vermaas, V. F. J. (1993) Plant Mol. Biol. 23, 123–133]. The sequence A350PWLEPLR357 in luminal loop E is conserved in CP43 genes from 50 organisms. To map important posttranslational modifications in this sequence, tandem mass spectrometry (MS/MS) was used. These data show that the indole side chain of Trp-352 is posttranslationally modified to give mass shifts of +4, +16, and +18 daltons. The masses of the modifications suggest that the tryptophan is modified to kynurenine (+4), a keto-/amino-/hydroxy- (+16) derivative, and a dihydro-hydroxy- (+18) derivative of the indole side chain. Peptide synthesis and MS/MS confirmed the kynurenine assignment. The +16 and +18 tryptophan modifications may be intermediates formed during the oxidative cleavage of the indole ring to give kynurenine. The site-directed mutations, W352C, W352L, and W352A, exhibit an increased rate of photoinhibition relative to wild type. We hypothesize that Trp-352 oxidative modifications are a byproduct of PSII water-splitting or electron transfer reactions and that these modifications target PSII for turnover. As a step toward understanding the tertiary structure of this CP43 peptide, structural modeling was performed by using molecular dynamics.


Urology | 2010

Proteome of Human Calcium Kidney Stones

Benjamin K. Canales; Lorraine B. Anderson; LeeAnn Higgins; Kathy M. Ensrud-Bowlin; Kenneth P. Roberts; Baolin Wu; Il Won Kim; Manoj Monga

OBJECTIVES Idiopathic calcium oxalate (CaOx) stones are believed to develop attached to papillary subepithelial deposits called Randalls plaques. Calcium phosphate (CaP) stones, conversely, are thought to arise within the inner medullary collecting ducts, enlarging and damaging surround tubular structures as they expand. If this is true, we theorize that differences will be seen within the organic portion (matrix) of CaOx stones compared with CaP stones using a mass spectroscopy (MS) approach. METHODS From a cohort of 47 powdered stones, 25 calculi (13 CaOx, 12 CaP) were confirmed to contain a dominant mineral content of >80% by powder x-ray diffraction. Matrix proteins were then extracted, purified, and digested. Peptide tandem MS data were acquired, and spectra were searched against a large human protein database to identify protein matches. RESULTS No significant differences were seen between pattern profiles of CaOx and CaP stones. However, variations in protein expression patterns were seen within individual CaOx (monohydrate and dihydrate) and CaP (apatite and brushite) mineral subtypes, suggesting a relationship between crystal-surface binding properties and matrix composition. Both groups contain a large number of inflammatory proteins and a catalog of common proteins is included. CONCLUSIONS Calcium kidney stone matrix contains hundreds of proteins and is predominated by proteins associated with inflammatory response. Many of the same proteins were identified in both CaOx and CaP stones, suggesting inflammation as a unifying origin or a common secondary role in calcium stone pathogenesis.


Journal of Endourology | 2008

Second prize: Comprehensive proteomic analysis of human calcium oxalate monohydrate kidney stone matrix

Benjamin K. Canales; Lorraine B. Anderson; LeeAnn Higgins; Joel W. Slaton; Kenneth P. Roberts; Nathan Liu; Manoj Monga

BACKGROUND AND PURPOSE Previous efforts to identify the protein content of stone matrix have been limited by the lack of technology necessary to analyze the highly insoluble protein-crystalline complex. Our study objective is to characterize the matrix of calcium oxalate monohydrate (COM) stones using a comprehensive proteomics approach. MATERIALS AND METHODS Seven pure COM stones were powdered, and proteins were extracted using four different buffer solutions. Detergent cleanup spin columns or concentrators were used to remove detergent and to exchange buffers before trypsin digestion. Tryptic peptides were analyzed with reversed-phase, high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (MS/MS) using a QSTAR Pulsar i quadrapole time of flight mass spectrometer. Tandem mass spectra were searched against National Center for Biotechnology Information human nonredundant database using ProteinPilot 1.0 software (Applied Biosystems, Inc.) for protein hits; peptide MS/MS spectra were manually inspected. RESULTS Of the four buffers, only 2% sodium dodecyl sulfate (SDS) samples had normal HPLC and MS/MS elution patterns. We identified 68 distinct proteins with 95% confidence. More than 50 of the proteins have not been previously identified in stone matrix. Of particular note, a significant number of inflammatory proteins were identified, including immunoglobulins, defensin -3, clusterin, complement C3a, kininogen, and fibrinogen. CONCLUSIONS SDS reducing buffer was efficient at solubilizing proteins from stone matrix for further MS-based proteomic analysis. A variety of cellular, structural, and plasma proteins comprise COM stone matrix. Several of the stone proteins are involved in cell injury pathways, which suggests that inflammation plays a role in human COM stone formation.


The Journal of Neuroscience | 2009

Proteomic Analysis Uncovers Novel Actions of the Neurosecretory Protein VGF in Nociceptive Processing

Maureen Riedl; Patrick D. Braun; Kelley F. Kitto; Samuel A. Roiko; Lorraine B. Anderson; Christopher N. Honda; Carolyn A. Fairbanks; Lucy Vulchanova

Peripheral tissue injury is associated with changes in protein expression in sensory neurons that may contribute to abnormal nociceptive processing. We used cultured dorsal root ganglion (DRG) neurons as a model of axotomized neurons to investigate early changes in protein expression after nerve injury. Comparing protein levels immediately after DRG dissociation and 24 h later by proteomic differential expression analysis, we found a substantial increase in the levels of the neurotrophin-inducible protein VGF (nonacronymic), a putative neuropeptide precursor. In a rodent model of nerve injury, VGF levels were increased within 24 h in both injured and uninjured DRG neurons, and the increase persisted for at least 7 d. VGF was also upregulated 24 h after hindpaw inflammation. To determine whether peptides derived from proteolytic processing of VGF participate in nociceptive signaling, we examined the spinal effects of AQEE-30 and LQEQ-19, potential proteolytic products shown previously to be bioactive. Each peptide evoked dose-dependent thermal hyperalgesia that required activation of the mitogen-activated protein kinase p38. In addition, LQEQ-19 induced p38 phosphorylation in spinal microglia when injected intrathecally and in the BV-2 microglial cell line when applied in vitro. In summary, our results demonstrate rapid upregulation of VGF in sensory neurons after nerve injury and inflammation and activation of microglial p38 by VGF peptides. Therefore, VGF peptides released from sensory neurons may participate in activation of spinal microglia after peripheral tissue injury.


Proteome Science | 2010

Quantitative proteomic analysis by iTRAQ ® for the identification of candidate biomarkers in ovarian cancer serum

Kristin L.M. Boylan; John D. Andersen; Lorraine B. Anderson; LeeAnn Higgins; Amy P.N. Skubitz

BackgroundOvarian cancer is the most lethal gynecologic malignancy, with the majority of cases diagnosed at an advanced stage when treatments are less successful. Novel serum protein markers are needed to detect ovarian cancer in its earliest stage; when detected early, survival rates are over 90%. The identification of new serum biomarkers is hindered by the presence of a small number of highly abundant proteins that comprise approximately 95% of serum total protein. In this study, we used pooled serum depleted of the most highly abundant proteins to reduce the dynamic range of proteins, and thereby enhance the identification of serum biomarkers using the quantitative proteomic method iTRAQ®.ResultsMedium and low abundance proteins from 6 serum pools of 10 patients each from women with serous ovarian carcinoma, and 6 non-cancer control pools were labeled with isobaric tags using iTRAQ® to determine the relative abundance of serum proteins identified by MS. A total of 220 unique proteins were identified and fourteen proteins were elevated in ovarian cancer compared to control serum pools, including several novel candidate ovarian cancer biomarkers: extracellular matrix protein-1, leucine-rich alpha-2 glycoprotein-1, lipopolysaccharide binding protein-1, and proteoglycan-4. Western immunoblotting validated the relative increases in serum protein levels for several of the proteins identified.ConclusionsThis study provides the first analysis of immunodepleted serum in combination with iTRAQ® to measure relative protein expression in ovarian cancer patients for the pursuit of serum biomarkers. Several candidate biomarkers were identified which warrant further development.


The Journal of Thoracic and Cardiovascular Surgery | 2011

Continued depression of maximal oxygen consumption and mitochondrial proteomic expression despite successful coronary artery bypass grafting in a swine model of hibernation

Rosemary F. Kelly; Jesus A Cabrera; Elizabeth A. Ziemba; Melanie Crampton; Lorraine B. Anderson; Edward O. McFalls; Herbert B. Ward

OBJECTIVE Clinical studies indicate incomplete functional recovery of hibernating myocardium after coronary artery bypass grafting. We hypothesized that persistent contractile abnormalities after coronary artery bypass grafting are associated with decreased mitochondrial proteins involving electron transport chain that might limit maximal oxygen consumption. METHODS Seven pigs with hibernating myocardium underwent off-pump revascularization with left internal thoracic artery to mid left anterior descending artery. At 4 weeks, left internal thoracic artery anastomosis was patent by multidetector computed tomography. Regional function (transthoracic echocardiography) and blood flow (microspheres) were assessed at rest and during high-dose dobutamine (40 μg/[kg · min]). Expression of electron transport chain proteins was analyzed with isobaric tags for relative and absolute quantification. RESULTS After revascularization, multidetector computed tomography confirmed severe left anterior descending stenosis and patent left internal thoracic artery graft. Regional function and blood flow normalized at rest; however, function in left anterior descending distribution remained depressed relative to remote regions, and myocardial blood flow in that region did not increase normally when challenged with high-work state. Concomitant with reduced maximal blood flow response in left anterior descending region was more than 40% reduction in electron transport chain proteins essential to adenosine triphosphate production. CONCLUSIONS Despite successful revascularization of hibernating myocardium, regional function and blood flow remained depressed during catecholamine stress. Electron transport chain proteins known to be downregulated during adaptive process within hibernating myocardium did not normalize after revascularization. These data demonstrate a potential bioenergetic cause of persistent dysfunction and heart failure within successfully revascularized hibernating myocardium.


Journal of Endourology | 2009

Presence of Five Conditioning Film Proteins Are Highly Associated with Early Stent Encrustation

Benjamin K. Canales; LeeAnn Higgins; Todd W. Markowski; Lorraine B. Anderson; Qin A. Li; Manoj Monga

PURPOSE Ureteral stents are susceptible to biofilm formation and crystal deposition, especially in stone formers. To identify proteins responsible for this accumulation, we compared conditioning film proteomes obtained from human ureteral stents with and without encrustation. MATERIALS AND METHODS Twenty-seven Bard Inlay hydrophilic ureteral stents were removed after ureteroscopy. Stent encrustation was quantified by visual analog score 0 (none) to 4 (heavy) and further categorized as nonencrusted (scores 0 and 1; n = 22) or encrusted (scores 2, 3, and 4; n = 5). Stent conditioning film was sampled and digested with trypsin, and peptide tandem mass spectrometry data were acquired using liquid chromatography. After protein identification, unconditional exact tests were used to compare categorical variables versus encrustation outcome. Stone analysis and follow-up metabolic urine profiles were examined to identify additional risk factors for stent encrustation. RESULTS More than 300 unique proteins with >95% confidence were identified. Proteins alpha-1 anti-trypsin, Ig kappa, IgH G1, and histone H2b and H3a were found to be highly associated with stent encrustation (p < 0.05), while Tamm-Horsfall protein and histone H2a were found to have a marginal association (p < 0.1). Patients with early stent encrustation were more likely to have mixed stone analysis (p = 0.03) and low urinary volumes (p < 0.01). CONCLUSION Immunoglobulins and Tamm-Horsfall protein are common urinary proteins that appear to nonselectively bind early onto ureteral stent surfaces. Histones, nuclear DNA-condensing proteins, likely contribute to stent encrustation because of their unique net positive charge and may represent a potential clinical target for encrustation prevention.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Altered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning

Jesus A Cabrera; Elizabeth A. Ziemba; Robert Colbert; Lorraine B. Anderson; Willem Sluiter; Dirk J. Duncker; Tammy A. Butterick; Joseph Sikora; Herbert B. Ward; Rosemary F. Kelly; Edward O. McFalls

Altered expression of mitochondrial electron transport proteins has been shown in early preconditioned myocardial tissue. We wished to determine whether these alterations persist in the Second Window of Protection (SWOP) and if so, whether a favorable energetic state is facilitated during subsequent ischemia. Fourteen pigs underwent a SWOP protocol with ten 2-minute balloon inflations in the LAD artery, each separated by 2 minutes reperfusion. Twenty-four hours later, mitochondria were isolated from SWOP and SHAM pig hearts and analyzed for uncoupling protein (UCP)-2 content by western blot analysis, proteomic changes by iTRAQ(®) and respiration by an oxygen electrode. In parallel in vivo studies, high-energy nucleotides were obtained by transmural biopsy from anesthetized SWOP and SHAM pigs at baseline and during sustained low-flow ischemia. Compared with SHAM mitochondria, ex vivo SWOP heart tissue demonstrated increased expression of UCP-2, Complex IV (cytochrome c oxidase) and Complex V (ATPase) proteins. In comparison with SHAM pigs during in vivo conditions, transmural energetics in SWOP hearts, as estimated by the free energy of ATP hydrolysis (ΔG(0)), were similar at baseline but had decreased by the end of low-flow ischemia (-57.0 ± 2.1 versus -51.1 ± 1.4 kJ/mol; P < 0.05). In conclusion, within isolated mitochondria from preconditioned SWOP hearts, UCP-2 is increased and in concert with enhanced Complex IV and V proteins, imparts a favorable energetic state during low-flow ischemia. These data support the notion that mitochondrial adaptations that may reduce oxidant damage do not reduce the overall efficiency of energetics during sustained oxygen deprivation.


Nutrition and Cancer | 2011

Mouse prostate proteomes are differentially altered by supranutritional intake of four selenium compounds

Jinhui Zhang; Lei Wang; Guang-Xun Li; Lorraine B. Anderson; Yanji Xu; Bruce A. Witthuhn; Junxuan Lü

We have shown that, in contrast to selenomethionine (SeMet) or selenite, methylseleninic acid (MSeA) and Se-methylselenocysteine (MSeC) exert prostate cancer (PCa) inhibitory effect in preclinical models. Here we investigated the prostate proteome signatures of mice treated with each selenium (Se) form for hypothesis generation concerning their potential in vivo molecular targets and cancer risk modification. Nude mice bearing subcutaneous PC-3 xenografts were treated daily with each Se form (3 mg Se/kg) orally for 45 days. Five prostates were pooled from each group. Their proteomes were profiled by LC-MS/MS with iTRAQ labeling. Of the 1,088 proteins identified, 72 were significantly modulated by one or more Se forms. MSeA and MSeC each induced separate sets of tumor suppressor proteins and suppressed different onco-proteins. Proteins induced by selenite and shared with MSeC were related to energy metabolism (e.g., fatty-acid synthase), and those induced by SeMet included vimentin and heat-shock protein-70, favoring cancer growth. While proteome changes induced by MSeA were associated with PCa risk reduction, desirable risk-reducing signatures induced by MSeC were counterbalanced by risk-promoting patterns shared with selenite and SeMet. We propose that the balance of oncogenic vs. suppressor protein patterns in the prostate may impact the direction of PCa risk modification by a given selenium.

Collaboration


Dive into the Lorraine B. Anderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk J. Duncker

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Willem Sluiter

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge